Chuyển hóa sắt: tổng hợp hemoglobin

2020-10-27 02:50 PM

Khi hồng cầu bị phá hủy, các hemoglobin từ các tế bào này được đưa vào các tế bào monocytemacrophage. Sắt giải phóng và được lưu trữ chủ yếu trong ferritin được sử dụng khi cần thiết cho sự hình thành của hemoglobin mới.

Biên tập viên: Trần Tiến Phong

Đánh giá: Trần Trà My, Trần Phương Phương

Sắt là nguyên tố thiết yếu cho không chỉ tổng hợp hemoglobin mà còn cho các phân tử khác trong cơ thể (ví dụ: myoglobin, cytochromes, cytochrome oxydase, peroxydase và catalase), do đó cần hiểu rõ cơ chế sắt được sử dụng trong cơ thể. Tổng lượng sắt trong cơ thể khoảng 4-5 grams, 65% ở trong hemoglobin, khoảng 4% ở trong myoglobin, 1% trong các hợp chất chứa heme xúc tác các phản ứng oxy hóa nội bào, 0,1% liên kết với transferrin trong huyết tương, 15-30% liên kết với ferritin được dự trử để sử dụng sau trong hệ thống liên võng nội mô và nhu mô gan.

Vận chuyển và dự trữ sắt

Hình trình bày quá trình vận chuyển, dự trữ và chuyển hóa sắt trong cơ thể. Sau khi được hấp thu từ ruột non, sắt được đưa vào huyết tương và gắn với một β-protein là apotransferrin tạo thành transferring và được vận chuyển trong dòng máu. Sắt liên kết lỏng lẻo với transferring và có thể giải phóng cho bất kì mô nào trong cơ thể. Sắt dư thừa được dự trữ trong nhu mô gan và ít hơn tại hệ thống các tế bào võng nội mô của tủy xương.

Vận chuyển và chuyển hóa sắt

Hình. Vận chuyển và chuyển hóa sắt

Trong tế bào chất. sắt gắn với apoferritin tạo nên ferritin. Apoferritin nặng khoảng 460.000 Da và gắn được với lượng lớn sắt tại các cụm gốc liên kết; do đó, một phân tử có thể đang có 1 lượng lớn hoặc nhỏ sắt, sắt này được gọi là sắt dự trữ.

Có một lượng sắt dự trữ nhỏ hơn không tan dưới dạng hemosiderin, dạng này đặc biệt cần khi lượng sắt thừa vượt quá khả năng dự trữ của apoferritin. Hemosidrin là phân tử lớn có thể quan sát bằng kính hiển vi, ngược lại ferritin rất nhỏ và phân tán nên phải quan sát bằng kính hiển vi điển tử.

Khi lượng chất sắt trong huyết tương giảm xuống thấp, một số sắt trong các bể chứa ferritin được giải phóng một cách dễ dàng và vận chuyển dưới dạng transferrin trong huyết tương đến các khu vực của cơ thể, nơi cần thiết. Một đặc trưng của phân tử transferrin là nó liên kết mạnh với thụ thể ở màng tế bào của erythroblasts (nguyên hồng cầu) trong tủy xương. Sau đó, sắt được đưa vào erythroblasts bởi endocytosis (hốc thực bào). Transferrin cung cấp sắt trực tiếp đến ti thể (mitochondria), nơi heme được tổng hợp. Ở những người không có đủ lượng transferrin trong máu, thiếu vận chuyển sắt vào erythroblasts có thể gây ra thiếu máu hypochromic nặng ( thiếu máu nhược sắc, tức là, hồng cầu ít hemoglobin hơn rất nhiều so với bình thường).

Khi hồng cầu đã sống khoảng 120 ngày và bị phá hủy, các hemoglobin từ các tế bào này được đưa vào các tế bào monocytemacrophage (thực bào đơn nhân). Sắt giải phóng và được lưu trữ chủ yếu trong ferritin được sử dụng khi cần thiết cho sự hình thành của hemoglobin mới.

Lượng mất hàng ngày của sắt. Đàn ông đào thải ra khoảng 0,6 mg sắt mỗi ngày, chủ yếu qua phân. Số lượng bổ sung sắt bị mất khi chảy máu xảy ra. Đối với phụ nữ, mất máu kinh nguyệt gây tổn thất kho sắt dài hạn với mức trung bình khoảng 1,3 mg / ngày.

Hấp thu sắt từ ruột

Sắt được hấp thu từ tất cả các đoạn của ống tiêu hóa, hầu hết theo cơ chế sau. Gan tiết một lượng vừa phải apotransferrin vào mật, chảy qua các ống dẫn mật vào tá tràng. Ở đây, apotransferrin kết hợp với sắt tự do và cũng có ở một số các hợp chất sắt, như hemoglobin và myoglobin từ thịt, hai trong những nguồn quan trọng nhất của sắt trong chế độ ăn uống. Sự kết hợp này tạo ra transferrin. Thứ tự xảy ra là, liên kết với các thụ thể ở màng của các tế bào biểu mô ruột. Sau đó, bằng pinocytosis (ẩm bào), các transferrin phân tử, mang theo cửa sắt, được hấp thụ vào các tế bào biểu mô và sau đó vào máu mao mạch dưới các tế bào này dưới dạng transferring huyết tương. Sắt hấp thu từ ruột rất chậm, với tốc độ tối đa chỉ có một vài miligam mỗi ngày. Điều này có nghĩa là ngay cả khi lượng sắt lớn có mặt trong thực phẩm, chỉ một tỷ lệ nhỏ có thể được hấp thụ.

Điều hòa tổng lượng sắt cơ thể bởi Kiểm soát sự hấp thu. Khi cơ thể đã trở nên bão hòa sắt, cơ bản tất cả apoferritin trong khu vực lưu trữ đã được kết hợp với sắt, tỷ lệ hấp thụ sắt bổ sung từ đường ruột giảm mạnh. Ngược lại, khi sắt lưu trữ đã trở nên cạn kiệt, tốc độ hấp thu có thể nhanh hơn năm lần hoặc nhiều hơn thời gian bình thường. Như vậy, tổng số sắt cơ thể được điều tiết chủ yếu bằng cách thay đổi tỷ lệ hấp thụ.

Đời sống hồng cầu khoảng 120. Khi hồng cầu được cung cấp từ tủy xương vào hệ thống tuần hoàn, chúng thường lưu hành trung bình 120 ngày trước khi bị tiêu diệt. Mặc dù trưởng thành nhưng hồng cầu không có nhân, ti thể, hoặc lưới nội chất, chúng có enzyme tế bào chất mà có khả năng chuyển hóa glucose và hình thành lượng nhỏ adenosine triphosphate (ATP). Các enzyme này có các vai trò: (1) duy trì tính linh động của màng tế bào, (2) duy trì sự vận chuyển qua màng của các ion, (3) giữ sắt của hemoglobin trong tế bào dưới dạng sắt II chứ không phải là sắt III và (4) ngăn chặn quá trình oxy hóa của các protein trong hồng cầu. Mặc dù vậy, hệ thống trao đổi chất của tế bào hồng cầu già dần dần ít hoạt động và các tế bào trở nên dễ vỡ hơn, có lẽ vì hồng cầu đã bị hao mòn.

Khi màng hồng cầu trở nên mong manh, các tế bào vỡ trong lúc qua một số điểm của vòng tuần hoàn. Nhiều người hồng cầu tự hủy trong lá lách, nơi chúng chui qua tủy đỏ của lá lách. Ở đó, giữa các bè cấu trúc của tủy đỏ, hầu hết các tế bào phải vượt qua, rộng chỉ 3 micrometers, so với 8 micrometers đường kính của RBC. Khi lá lách bị loại bỏ, số lượng hồng cầu già bất thường lưu hành trong máu tăng lên đáng kể.

Tiêu hủy Hemoglobin bởi đại thực bào. Khi hồng cầu vỡ và giải phóng hemoglobin, các hemoglobin được  thực bào gần như ngay lập tức bởi các đại thực bào trong nhiều bộ phận của cơ thể, đặc biệt là các tế bào Kupffer gan và đại thực bào của lá lách và tủy xương. Trong vài giờ tới vài ngày, các đại thực bào giải phóng sắt từ hemoglobin và cho nó trở lại vào máu, để được transferrin vận chuyển hoặc đến tủy xương sản xuất hồng cầu mới hoặc cho gan và các mô khác để lưu trữ dưới dạng ferritin.

Phần porphyrin của phân tử hemoglobin chuyển hóa bởi các đại thực bào, thông qua một loạt các giai đoạn, thành bilirubin sắc tố mật, được đưa vào máu và sau đó loại bỏ khỏi cơ thể bằng cách tiết thông qua gan vào mật.

Bài viết cùng chuyên mục

Cơ chế điều hòa nồng độ H+: hệ thống đệm phổi thận

Khi có sự thay đổi nồng độ H+, các hệ thống đệm trong dịch cơ thể sẽ phản ứng ngay trong vòng vài giây để giảm thiểu sự thay đổi này. Hệ thống đệm không thể loại bỏ H+ hoặc thêm H+ cho cơ thể.

Ước tính mức lọc cầu thận: độ thanh thải và nồng độ creatinin huyết tương

Nếu như mức lọc cầu thận đột ngột giảm xuống còn 50% giá trị bình thường, thận sẽ không lọc hết và chỉ bài tiết một nửa lượn creatinine, gây lắng đọng creatinine trong cơ thể.

Tổn thương thận cấp: nguyên nhân gây tổn thương

Nguyên nhân dẫn đến tổn thương thận cấp (AKI) có thể chia thành 3 nguyên nhân chính là tổn thương thận cấp trước thận, tổn thương thận cấp tại thận, và tổn thương thận cấp sau thận.

Shock giảm khối lượng tuần hoàn do mất huyết tương

Shock giảm thể tích do mất huyết tương có các đặc điểm gần giống với shock do xuất huyết, ngoại trừ một yếu tố phức tạp khác.

Điều chỉnh phân phối kali trong cơ thể

Hấp thụ kali trong một bữa ăn nhiều rau và trái cây vào một thể tích dịch ngoại bào, sẽ làm tăng nồng độ kali trong huyết tương, hầu hết kali ăn vào sẽ nhanh chóng di chuyển vào các tế bào cho đến khi thận có thể loại bỏ lượng dư thừa.

Hệ thống đệm phosphat: điều chỉnh thăng bằng kiềm toan trong cơ thể

Hệ thống đệm phosphat có pK của 6.8, giá trị đó không xa pH bình thường trong dịch cơ thể là 7,4; điều này cho phép hệ thống đệm hoạt động gần tối đa.

Hiểu biết toàn diện cơ chế bệnh sinh của béo phì

Nguy cơ béo phì ảnh hưởng đến nhiều bệnh lý khác nhau như xơ gan, tăng huyết áp, bệnh lý tim mạch, đột quỵ, và bệnh thận xuất hiện liên quan nhiều tới béo tạng (béo bụng) hơn là tăng dự trữ mỡ dưới da, hoặc dự trữ chất béo phần thấp cơ thể như là hông.

Shock giảm khối lương tuần hoàn do chấn thương

Nhiều nỗ lực đã được thực hiện để chỉ ra các yếu tố độc hại do các mô bị chấn thương tiết ra là một trong những nguyên nhân gây shock sau chấn thương.

Hấp thu và bài tiết kali qua thận

Sự thay đổi hàng ngày trong bài tiết kali được gây ra chủ yếu bởi những thay đổi trong bài tiết kali ở các ống ở lượn xa và ống góp. Các vị trí quan trọng nhất để điều hòa bài tiết kali là các tế bào chính của cuối ống lượn xa và ống góp.

Tồn tại ống động mạch: bệnh tim bẩm sinh shunt trái phải

Ngay sau khi trẻ được sinh ra và bắt đầu thở, phổi sẽ phồng lên, các phế nang chứa đầy không khí mà sức cản của dòng máu qua cây mạch phổi cũng giảm rất nhiều, tạo điều kiện cho áp lực động mạch phổi giảm xuống.

Đời sống của bạch cầu: thời gian trong máu tuần hoàn và trong mô

Đời sống bạch cầu sau khi rời khỏi tủy xương thường là 4-8h trong máu tuần hoàn và khoảng 4-5 ngày trong các mô cần chúng. Trong các nhiễm khuẩn nghiêm trọng ở mô, đời sống thường bị rút ngắn chỉ còn vài giờ.

Khí ra vào phổi: áp lực gây ra sự chuyển động của không khí

Áp suất màng phổi là áp lực của dịch trong khoang mỏng giữa màng phổi lá tạng và màng phổi lá thành. Áp lực này bình thường hút nhẹ hay áp lực âm nhẹ.

Hệ thống đệm H+ trong dịch cơ thể

Tầm quan trọng của hệ thống đệm được thể hiện rõ khi nồng độ H+ thấp trong các dịch cơ thể và lượng tương đối lớn acid được sản xuất ra trong cơ thể.

Đại cương về viêm

Virchow (thế kỷ XIX) đã cho rằng viêm là phản ứng cục bộ, nhưng hiện tại người ta cho rằng viêm là biểu hiện cục bộ của một phản ứng toàn thân.

Rối loạn cân bằng glucose máu

Trong đói dài ngày, giảm glucose máu có biểu hiện lâm sàng trung bình sau khoảng 50 ngày (đối với người khỏe mạnh) do kiệt cơ chất cần cho sinh đường mới.

Ảnh hưởng của Leukemia trên cơ thể: di căn các tế bào leukemia

Ảnh hưởng thường gặp trong leukemia là phát triển sự nhiễm khuẩn, thiếu máu nặng, thiếu tiểu cầu. Các ảnh hưởng này chủ yếu dẫn đến từ sự thay thế các bạch cầu bình thường bằng các tế bào leukemia không có chức năng.

Tổng hợp hemoglobin: gắn kết ô xy và thải trừ CO2

Hemoglobin là có khả năng gắn không bền và thuận nghịch với phân tử oxi. Khả năng này liên quan đến hô hấp bởi vì chức năng cơ bản của hemoglobin là gắn với oxi tại phổi và giải phóng chúng tại mao mạch mô ngoại vi.

Giảm mức lọc cầu thận: tăng áp suất thẩm thấu keo mao mạch cầu thận

Tăng áp suất keo huyết tương động mạch kéo theo tăng áp suất keo mao mạch cầu thận, quay trở lại làm giảm mức lọc cầu thận.

Quá trình bệnh lý

Thời kỳ tiệm phát có thể kéo dài mấy ngày và nếu sức đề kháng của cở thể mạnh thì bệnh cũng có thể kết thúc trong giai đoạn nầy, ta gọi là bệnh ở thể sẩy.

Toan gây giảm HCO3-/H+ trong dịch ống thận: cơ chế bù trừ của thận

Cả nhiễm toan hô hấp và chuyển hóa đều gây giảm tỉ lệ HCO3-/H+ trong dịch ống thận. Như một kết quả, sự quá mức H+ trong ống thận làm giảm tái hấp thu HCO3- và để lại thêm H+ có sẵn để kết hợp với bộ đệm tiết niệu NH4+ và HPO4--.

Đông máu cầm máu: các xét nghiệm sử dụng trong lâm sàng

Máu lấy từ bệnh nhân ngay lập tức hòa trộn với oxalat nên không xảy ra quá trình chuyển hóa prothrombin thành thrombin. Sau đó, một lượng lớn ion calci và yếu tố mô nhanh chóng được hòa trộn với máu có oxalat.

Tổng hợp ADH ở vùng dưới đồi và giải phóng từ thùy sau tuyến yên

Sự bài tiết ADH để đáp ứng với kích thích thẩm thấu là nhanh chóng, vì vậy nồng độ ADH huyết tương có thể tăng nhiều lần trong vòng vài phút, do đó cung cấp một phương thức thay đổi sự bài xuất nước qua thận của.

Tăng nồng độ H+: làm tăng thông khí phế nang

Kiểm soát hô hấp không thể đưa nồng độ H+ hoàn toàn về bình thường trong trường hợp có một nguyên nhân mất cân bằng ngoài hệ hô hấp ảnh hưởng đến pH.

Shock giảm khối lượng tuần hoàn không phục hồi

Trong tình trạng shock nặng, cuối cùng sẽ đạt đến giai đoạn mà bệnh nhân đó sẽ chết mặc dù liệu pháp điều trị tích cực vẫn có thể đưa cung lượng tim trở lại bình thường trong thời gian ngắn.

Cơ chế cô đặc nước tiểu: những thay đổi áp suất thẩm thấu ở các đoạn khác nhau của ống thận

Sự giảm cô đặc do urê ít được tái hấp thu vào tủy kẽ từ các ống góp khi nồng độ ADH thấp và thận hình thành một khối lượng lớn nước tiểu pha loãng.