Vận chuyển CO2 trong máu: các dạng vận chuyển và hiệu ứng Hanldane

2021-08-22 10:08 AM

Một lượng lớn CO2 đó có vai trò tạo nên sự cân bằng axit-bazơ của các chất dịch cơ thể. Dưới điều kiện bình thường khi nghỉ ngơi, trong mỗi 100 ml máu trung bình có 4ml CO2 được vận chuyển từ mô tới phổi.

Biên tập viên: Trần Tiến Phong

Đánh giá: Trần Trà My, Trần Phương Phương

Vận chuyển CO2 trong máu

Sự vận chuyển CO2 trong máu thường không phức tạp như vận chuyển O2 vì ngay cả trong những điều kiện bất thường nhất, CO2 vẫn luôn được vận chuyển với số lượng lớn hơn nhiều so với O2. Tuy nhiên, một lượng lớn CO2 đó có vai trò tạo nên sự cân bằng axit-bazơ của các chất dịch cơ thể. Dưới điều kiện bình thường khi nghỉ ngơi, trong mỗi 100 ml máu trung bình có 4ml CO2 được vận chuyển từ mô tới phổi.

Các dạng vận chuyển CO2

Để bắt đầu quá trình vận chuyển CO2, CO2 khuếch tán ra khỏi các tế bào ở mô dưới dạng phân tử CO2 hòa tan. Khi đi vào các mao mạch ở mô, ngay lập tức, CO2 đã khởi động một lượng lớn phản ứng hóa học và vật lí, những phản ứng này cần thiết cho sự vận chuyển CO2.

Vận chuyển CO2 dưới dạng hòa tan:

Một phần nhỏ của CO2 được vận chuyển dưới dạng hoà tan đến phổi. Nhớ lại rằng PCO2 máu tĩnh mạch là 45 mm Hg và ở máu động mạch là 40 mm Hg. Lượng CO2 hòa tan trong máu ở phân áp 45 mm Hg là khoảng 2,7 ml/dl (2,7% thể tích). Lượng hòa tan ở phân áp 40 mm Hg là khoảng 2,4 ml, hay sự khác biệt là 0,3 ml. Do đó, chỉ có khoảng 0,3 ml CO2 được vận chuyển dưới dạng hòa tan bởi mỗi 100 ml máu chảy. Nó chiếm khoảng 7 % lượng CO2 được vận chuyển.

Vận chuyển carbon dioxide trong máu

Hình. Vận chuyển carbon dioxide trong máu

Vận chuyển CO2 dưới dạng ion Bicarbonate( HCO3-):

Phản ứng của Dioxide Carbon bên trong hồng cầu - Tác động của Carbonic Anhydrase.

CO2 không hòa tan trong máu phản ứng với nước để tạo thành acid carbonic. Phản ứng này có thể xảy ra rất chậm, do đó bên trong hồng cầu có một enzyme đóng vai trò rất quan trọng là carbonic anhydrase xúc tác cho phản ứng giữa CO2 và nước trong hồng cầu làm tăng tốc tốc độ phản ứng lên khoảng 5000 lần. Do đó, thay vì cần thời gian dài để xảy ra phản ứng như ở trong huyết tương, các phản ứng xảy ra rất nhanh trong hồng cầu và đạt trạng thái cân bằng gần như hoàn toàn trong khoảng thời gian rất ngắn. Hiện tượng này cho phép một lượng lớn CO2 phản ứng bên trong hồng cầu, ngay cả trước khi máu đi qua các mao mạch ở mô.

Sự phân ly của acid carbonic thành ion Bicarbonate và ion: Trong giây lát, acid carbonic (H2CO3) được tạo ra trong hồng cầu đã phân ly thành ion -HCO3- - và ion H+. Hầu hết lượng ion H+ sẽ kết hợp với hemoglobin trong hồng cầu vì hemoglobin là một hệ đệm acid- base mạnh. Đổi lại, -HCO3- sẽ khuếch tán từ hồng cầu vào huyết tương, trong khi đó các ion clorua khuếch tán từ huyết tương vào hồng cầu để thế chỗ. Sự khuếch tán này được thực hiện bởi sự có mặt của một loại protein mang bicarbonate-chloride đặc biệt trong màng hồng cầu, mà nhờ đó sự trao đổi qua lại giữa 2 ion này theo hướng ngược nhau được vận chuyển một cách nhanh chóng. Như vậy, sự di chuyển ion chloride ở hồng cầu trong máu tĩnh mạch là lớn hơn ở động mạch, hiện tượng này gọi là sự di chuyển ion chloride.

Dạng thuận nghịch của CO2 ở bên trong hồng cầu dưới tác động của enzyme anhydrase carbonic chiếm khoảng 70 % lượng CO2 vận chuyển từ mô đến phổi. Do đó đây là dạng vận chuyển CO2 quan trọng nhất. Thật vậy, khi ức chế anhydrase được thực hiện trên động vật để ngăn chặn các phản ứng của anhydrase carbonic trong hồng cầu, sự vận chuyển CO2 từ các mô trở nên rất kém đến nỗi mà PCO2 ở mô có thể tăng lên đến 80 mm Hg thay vì mức bình thường là 45 mm Hg.

Sự vận chuyển của CO2 dưới dạng kết hợp với hemoglobin và protein huyết tương – Carbaminohemoglobin. Ngoài phản ứng với nước, CO2 phản ứng trực tiếp với các gốc amin của phân tử hemoglobin để tạo thành các hợp chất carbaminohemoglobin (CO2Hgb). Sự kết hợp của CO2 và hemoglobin là một phản ứng thuận nghịch xảy ra với một sự gắn kết lỏng lẻo, do đó CO2 có thể dễ dàng giải phóng vào phế nang, nơi PCO2 thấp hơn so với các mao mạch phổi.

Một lượng nhỏ CO2 cũng phản ứng theo cách tương tự với protein huyết tương trong các mao mạch ở mô. Phản ứng này thực sự ít ý nghĩa đối với việc vận chuyển CO2 vì số lượng của các protein này trong máu chỉ bằng một phần tư số lượng hemoglobin.

Lượng CO2 có thể được vận chuyển từ các mô ngoại vi đến phổi nhờ carbamino gắn với hemoglobin và protein huyết tương chiếm khoảng 30 % của tổng số lượng CO2 được vận chuyển-thông thường là khoảng 1,5 ml CO2 trong mỗi 100 ml máu. Tuy nhiên, vì phản ứng này là chậm hơn nhiều so với phản ứng của CO2 bên trong hồng cầu nên thực sự nghi ngờ rằng trong điều kiện bình thường cơ chế carbamino này chỉ vận chuyển hơn 20 % tổng số CO2.

Đường cong phân ly carbon dioxide

Hình. Đường cong phân ly carbon dioxide

Đồ thị phân ly Carbon dioxide

Đồ thị phân ly carbon-dioxide (CO2) -mô tả sự phụ thuộc của tổng lượng CO2 trong máu ở tất cả các dạng vận chuyển của nó vào PCO2. Lưu ý rằng các giới hạn của PCO2 máu bình thường dao động trong một phạm vi hẹp, 40 mm Hg trong máu động mạch và 45 mm Hg trong máu tĩnh mạch. Cũng lưu ý rằng bình thường nồng độ CO2 trong máu dưới tất cả các dạng khác nhau của nó chiếm khoảng 50% thể tích, nhưng chỉ có 4% này được trao đổi trong quá trình vận chuyển bình thường của CO2 từ mô đến phổi. Do đó nồng độ CO2 tăng lên đến khoảng 52 % thể tích khi máu đi qua các mô và giảm xuống còn khoảng 48% thể tích khi nó đi qua phổi.

Khi ô xy gắn với Hemoglobin, Carbon dioxide được giải phóng (hiệu ứng haldane) làm tăng sự vận chuyển CO2

Chúng ta đã chỉ ra rằng sự gia tăng CO2 trong máu gây ra sự giải phóng O2 từ hemoglobin (hiệu ứng Bohr), đó là một yếu tố quan trọng trong việc tăng vận chuyển O2. Điều ngược lại cũng đúng: việc O2 gắn với hemoglobin có xu hướng thế chỗ CO2 trong máu. Thật vậy, hiệu ứng này, gọi là hiệu ứng Haldane, vai trò quan trọng trong việc thúc đẩy vận chuyển CO2 hơn nhiều so với hiệu ứng Bohr trong việc thúc đẩy vận chuyển O2.

Các phần của đường cong phân ly carbon dioxide

Hình. Các phần của đường cong phân ly carbon dioxide

Khi PO2 là 100 mm Hg hoặc 40 mm Hg. Mũi tên thể hiện hiệu ứng Haldane đối với việc vận chuyển carbon dioxide.

Kết quả của hiệu ứng Haldane từ thực tế đơn giản là: sự kết hợp của O2 với hemoglobin trong phổi dẫn đến hemoglobin để trở thành một axit mạnh do đó đã đẩy CO2 ra khỏi máu và vào các phế nang theo hai cách. Đầu tiên, các hemoglobin có tính acid cao hơn nên ít có khuynh hướng kết hợp với CO2 để tạo thành carbaminohemoglobin, do đó đã đẩy CO2 ở dạng carbamin ra khỏi máu. Thứ hai, hemoglobin tăng tính axit cũng gây ra sự dư thừa ion H+ quá mức, và các ion này liên kết với HCO3­- các để tạo thành axit cacbonic, sau đó phân ly thành nước và CO2 và CO2 được giải phóng từ máu vào phế nang, cuối cùng ra ngoài không khí.

Ảnh hưởng đáng kể của hiệu ứng Haldane lên sự vận chuyển CO2 từ mô đến phổi. Đồ thị này cho thấy 2 phần của đồ thị phân ly CO2: (1) khi PO2 =100 mm Hg trong các mao mạch máu phổi, và (2) khi PO2 = 40 mmHg trong các mao mạch ở mô. Điểm A cho thấy PCO2 = 45 mmHg trong các mô bình thường chiếm 52 % thể tích CO2 trong máu. Ngay sau khi vào phổi, PCO2 giảm xuống còn 40 mm Hg và PO2 tăng lên đến 100 mm Hg. Nếu đường cong CO2 phân ly không thay đổi bởi hiệu ứng Haldane, thể tích CO2 trong máu sẽ giảm xuống còn 50 % thể tích, điều này sẽ làm tổn thất chỉ 2% thể tích của CO2. Tuy nhiên, sự gia tăng PO2 trong phổi làm giảm đường cong phân ly CO2 từ đường cong phía trên cao hơn xuống đường cong phía dưới thấp hơn trong hình, vì vậy thể tích CO2 giảm đến 48 % thể tích (điểm B). Điều này thể hiện có thêm 2 % thể tích co2 mất đi. Như vậy, hiệu ứng Haldane làm tăng khoảng gấp đôi lượng CO2 giải phóng từ máu vào trong phổi và khoảng gấp đôi sự vận chuyển CO2 trong các mô.

Thay đổi tính acid của máu trong quá trình vận chuyển CO2

Axit carbonic được hình thành khi đi CO2 vào máu trong các mô ngoại biên làm giảm pH máu. Tuy nhiên, phản ứng của axit này với các hệ đệm acid-base của máu ngăn nồng độ H+ tăng cao (pH giảm nhiều). Bình thường, máu động mạch có pH khoảng 7, 41, và khi máu nhận CO2 từ các mao mạch ở mô, pH máu giảm xuống đến một giá trị máu tĩnh mạch khoảng 7.37. Nói cách khác, một sự thay đổi pH là 0, 04 đơn vị đã diễn ra. Điều ngược lại xảy ra khi CO2 được giải phóng từ máu vào trong phổi, với độ pH tăng lên đến giá trị máu động mạch 7, 41. Trong lao động nặng hoặc các điều kiện khác cần các hoạt động trao đổi chất cao, hoặc khi tốc độ máu chảy qua mô chậm, việc giảm pH trong máu ở mô (và trong chính mô) có thể có thể nhiều hơn 0,5, khoảng 12 lần bình thường, gây ra nhiễm toan nặng ở mô.

Bài viết cùng chuyên mục

Tác dụng feedback của hormon giáp làm giảm bài tiết TSH của thùy trước tuyến yên

Để đạt được mức độ bài tiết lý tưởng, cơ chế feedback cụ thể tác dụng thông qua tuyến dưới đồi và thùy trước tuyến yên để kiểm soát tốc độ bài tiết của tuyến giáp.

Tự điều hòa lưu lượng máu não bảo vệ não trước sự dao động của huyết áp động mạch và vai trò hệ thần kinh giao cảm

Hệ tuần hoàn não nhận chi phổi giao cảm đi lên từ hạch giao cảm cổ trên ở vùng cổ, đi dọc theo các động mạch của não. Nó chi phối cả các động mạch lớn của não cũng như các động mạch xuyên sâu vào nhu mô não.

Đo điện thế màng tế bào

Để tạo ra một điện thế âm bên trong màng, chính các ion dương chỉ đủ phát triển lớp điện thế lưỡng cực ở màng phải được vận chuyển ra phía ngoài.

Hệ thần kinh thực vật chi phối đường tiêu hóa

Sự kích thích hệ giao cảm sẽ ức chế hoạt động của đường tiêu hóa, đối lập với hệ phó giao cảm. Nó tác động theo 2 đường: tác dụng trực tiếp của norepinephrine và do norepinephrine.

Nguyên nhân gây ngoại tâm thu: rối loạn nhịp tim

Ngoại tâm thu thường xuyên gặp trong thông buồng tim, ngoại tâm thu cũng xảy ra khi đứa catheter vào trong buồng thất phải và chén ép nội tâm mạc.

Sự khuếch tán của khí qua màng hô hấp: sự trao đổi khí CO2 và O2

Tổng lượng máu có trong mao mạch phổi dạo động từ 60ml tới 140ml, ta thấy với một lượng nhỏ thể tích máu mao mạch mà tại mao mạch lại có tổng diện tích lớn nên thế sẽ rất dễ dàng cho sự trao đổi khí CO2 và O2.

Huyết áp động mạch: kiểm soát bằng lợi liệu áp lực

Lượng dịch vào và ra phải cân bằng tuyệt đối,  nhiệm vụ này được thực hiện bởi điều khiển thần kinh và nội tiết và bởi hệ thống kiểm soát tại thận, nơi mà điều hòa bài tiết muối và nước.

Insulin kích hoạt receptor tế bào đích và những kết quả mang lại

Insulin liên kết với tiểu đơn vị của thụ thể của nó, gây ra quá trình tự phosphoryl hóa thụ thể - tiểu đơn vị, từ đó gây ra hoạt hóa tyrosine kinase.

Điều hòa bào tiết dịch tụy

Hai yếu tố acetylcholine và cholecystokinin, kích thích tế bào tiểu thùy của tuyến tụy, gây sản xuất một lượng lớn enzyme tiêu hóa của tuyến tụy và một lượng nhỏ nước và điện giải được bài tiết cùng.

Dẫn truyền xung động từ tận cùng thần kinh tới sợi cơ vân: Khớp thần kinh cơ

Điện thế hoạt động bắt đầu lan truyền trong các sợi cơ vân bởi các xung thần kinh đi theo cả hai hướng về phía tận cùng sợi cơ.

Kiểm soát sự tiết PTH thông qua nồng độ ion canxi

Giảm nồng độ ion canxi dịch ngoại bào ức chế con đường này,và kích thích bài tiết PTH quá trình này trái ngược với nhiều mô nội tiết, trong đó tiết hormone được kích thích khi những con đường được kích hoạt.

Sinh lý thần kinh vùng dưới đồi

Vùng dưới đồi có chức năng chống bài niệu thông qua ADH (antidiuretic hormon), đây là một hormon do nhân trên thị và nhân cạnh não thất bài tiết.

Phospholipids và Cholesterol trong cơ thể

Phospholipid được chi phối bởi yếu tố điều hòa kiểm soát tổng thể quá trình chuyển hóa chất béo. Cholesterol có ở trong khẩu phần ăn bình thường và nó có thể được hấp thu chậm từ hệ thống ruột vào các bạch huyết ruột

Đặc điểm phân tử của các sợi cơ co bóp

Một đặc tính của đầu myosin mà cần thiết cho sự co cơ là nó có chức năng như một enzyme adenosine triphosphatase (ATPase).

Di chuyển của các dòng điện trong ngực quanh tim trong suốt chu kỳ tim

Xung động tim đầu tiên đến trong tâm thất trong vách liên thất và không lâu sau đó lan truyền đến mặt bên trong của phần còn lại các tâm thất, như thể hiện bởi vùng màu đỏ và điện âm ký hiệu trên hình.

Block nhĩ thất không hoàn toàn: chặn đường truyền tín hiệu điện tim

Một điện tâm đồ có P-R kéo dài khoảng 0.3s thay vì bình thường khoảng 0,2s hoặc ít hơn. Do đó, block độ 1 được định nghĩa là sự chậm dẫn truyền từ nhĩ đến thất chứ không phải mất hẳn dẫn truyền.

Vai trò của hải mã trong học tập

Hải mã bắt nguồn như một phần của vỏ não thính giác. Ở nhiều động vật bậc thấp, phần vỏ não này có vai trò cơ bản trong việc xác định con vật sẽ ăn thức ăn ngon hay khi ngửi thấy mùi nguy hiểm.

Tái lập chênh lệch nồng độ ion natri và kali sau khi điện thế hoạt động màng tế bào kết thúc và vấn đề của chuyển hóa năng lượng

Các ion natri đã khuếch tán vào bên trong các tế bào trong suốt quá trình điện thế hoạt động và các ion kali vừa khuếch tán ra ngoài phải được trả lại trạng thái ban đầu.

Thành phần dịch nội bào và dịch ngoại bào của cơ thể người

Sự khác biệt lớn nhất giữa nội ngoại bào là nồng độ protein được tập trung cao trong huyết tương, do mao mạch có tính thấm kém với protein chỉ cho 1 lượng nhỏ protein đi qua.

Áp suất thẩm thấu keo của dịch kẽ

Về mặt định lượng, người ta thấy trung bình áp suất thẩm thấu keo dịch kẽ cho nồng nồng của protein là khoảng 8 mmHg.

Áp lực tĩnh mạch: áp lực tĩnh mạch trung tâm (nhĩ phải) và tĩnh mạch ngoại vi

Áp lực tâm nhĩ phải được điểu chỉnh bằng sự cân bằng giữa khả năng tống maú của tim ra khỏi tâm nhĩ phải và tâm thất vào phổi và chiều đẩy máu thừ các tĩnh mạch ngoại vi về tâm nhĩ phải.

Đường truyền thần kinh thính giác: cơ chế thính giác trung ương

Trong trung tâm thính giác của thân não, sự kích thích thường không còn đồng bộ với tần số âm thanh trừ khi với âm thanh có tần số dưới 200 chu kỳ/giây.

Chức năng vận động của thân não

Thân não hoạt động giống như một trạm chung chuyển cho các mệnh lệnh từ trung tâm thần kinh cao hơn. Ở phần tiếp theo, chúng ta sẽ bàn luận về vai trò của thân não trong việc chi phối cử động của toàn bộ cơ thể và giữ thăng bằng.

Hoạt động điện của lớp cơ trơn ống tiêu hóa

Ở sợi cơ trơn đường tiêu hóa, các kênh chịu trách nhiệm cho điện thế hoạt động lại hơi khác, chúng cho phép 1 lượng lớn ion Canxi cùng 1 lượng nhỏ ion Natri đi vào, do đó còn gọi là kênh Canxi - Natri.

Hệ thống đệm hemoglobin cho PO2 ở mô

O2 có thể thay đổi đáng kể, từ 60 đến hơn 500 mm Hg, nhưng PO2 trong các mô ngoại vi không thay đổi nhiều hơn vài mmHg so với bình thường, điều này đã chứng minh rõ vai trò "đệm oxy" ở mô của hệ thống hemoglobin trong máu.