- Trang chủ
- Sách y học
- Sinh lý y học
- Synap thần kinh trung ương: giải phẫu sinh lý của synap
Synap thần kinh trung ương: giải phẫu sinh lý của synap
Nhiều nghiên cứu về synap cho thấy chúng có nhiều hình dáng giải phẫu khác nhau, nhưng hầu hết chúng nhìn như là cái nút bấm hình tròn hoặc hình bầu dục, do đó, nó hay được gọi là: cúc tận cùng, nút synap, hay mụn synap.
Biên tập viên: Trần Tiến Phong
Đánh giá: Trần Trà My, Trần Phương Phương
Thông tin được truyền trong hệ thần kinh trung ương chủ yếu nhờ việc tạo điện thế hoạt động qua một loạt các tế bào thần kinh nối tiếp nhau, được gọi là các xung thần kinh. Tuy nhiên, mỗi một xung động thần kinh từ tế bào này (1) có thể bị chặn lại không tiếp tục truyền sang tế bào khác; (2) có thể được chuyển đổi từ một xung duy nhất thành chuỗi xung lặp đi lặp lại; hoặc (3) cũng có thể được kết hợp với xung động của tế bào thần kinh khác để tạo thành một chuỗi xung phức tạp tới tế bào thần kinh tiếp.

Hình. Một tế bào thần kinh vận động phía trước điển hình hiển thị các đầu cuối trước synap trên tế bào soma thần kinh và đuôi gai. Cũng lưu ý sợi trục đơn.
Một tế bào thần kinh vận động điển hình ở sừng trước tủy sống. Nó bao gồm 3 bộ phận cơ bản: thân tế bào - phần chính của tế bào thần kinh; sợi trục duy nhất - kéo dài từ thân rời khỏi tủy sống tới dây thần kinh ngoại vi; sợi nhánh - với số lượng rất lớn từ thân tế bào tỏa ra xung quanh. Có đến 10.000 đến 200.000 núm synap nhỏ được gọi là cúc synap nằm ở bề mặt của các sợi nhánh và thân của tế bào thần kinh vận động, trong đó 80-95% ở sợi nhánh và chỉ có 5-20% ở thân tế bào. Nhiều cúc synap tiết ra chất dẫn truyền thần kinh có tác dụng kích thích, một số khác lại có tác dụng ức chế sợi thần kinh sau synap.
Các tế bào thần kinh ở các phần khác nhau của tủy sống và não bộ thì có sự khác nhau ở: (1) kích thước của thân tế bào; (2) kích thước, số lượng, độ dài của các sợi nhánh - từ rất ngắn gần như bằng không đến vài cm; (3) độ dài và kích thước của sợi trục; (4) số lượng các cúc synap - từ một vài cho tới 200.000 trạm. Đặc điểm đó giúp cho các tế bào thần kinh ở mỗi nơi khác nhau thì phản ứng lại các tín hiệu đến bằng những cách khác nhau, do đó hệ thần kinh thực hiện được nhiều chức năng.
Cúc synap
Nhiều nghiên cứu về synap cho thấy chúng có nhiều hình dáng giải phẫu khác nhau, nhưng hầu hết chúng nhìn như là cái nút bấm hình tròn hoặc hình bầu dục, do đó, nó hay được gọi là: cúc tận cùng, nút synap, hay mụn synap.
Trạm trước synap được ngăn cách với trạm sau synap bởi khe synap có chiều rộng vào khoảng 200 đến 300 Angtron. Ở cúc tận cùng của nơron có 2 cấu trúc quan trọng để thực hiện chức năng của nó là túi chứa chất dẫn truyền và ty lạp thể. Túi chứa chất dẫn truyền khi giải phóng chất truyền đạt thần kinh vào khe synap sẽ kích thích hoặc ức chế nơ ron sau synap phụ thuộc vào loại receptor ở màng sau synap. Còn ty lạp thể cung cấp adenosine triphosphate (ATP) - nguồn năng lượng để tổng hợp chất truyền đạt thần kinh mới.
Cơ chế giải phóng chất dẫn truyền thần kinh - vai trò của ion canxi
Màng của trạm trước synap được gọi là màng trước synap - nó bao gồm 1 số lượng lớn kênh canxi voltagegated. Khi điện thế hoạt động khử cực màng trước synap, các kênh canxi này sẽ mở ra cho phép ion canxi đi từ ngoài vào trong tế bào trước synap. Lượng ion canxi đi vào sẽ quyết định số lượng chất truyền đạt thần kinh được giải phóng vào khe synap. Cơ chế chính xác của mối liên hệ này chưa được biết rõ, nhưng có những giả thuyết dưới đây được nêu ra.
Khi ion canxi đi vào bên trong trạm trước synap, nó sẽ gắn vào các phân tử protein đặc hiệu ở màng trong tế bào trước synap tạo ra cấu trúc được gọi là: điểm giải phóng. Những điểm giải phóng này mới cho phép một số túi chứa chất dẫn truyền giải phóng các chất dẫn truyền vào khe synap.
Tác dụng của chất truyền đạt thần kinh lên tế bào sau synap - chức năng của “protein thụ thể”
Màng sau synap chứa 1 số lượng lớn “protein thụ thể” (HÌNH 46-5A). Các protein thụ thể này có 2 thành phần quan trọng là: (1) phần kết hợp - nhô vào khe synap và là nơi kết hợp trực tiếp với chất truyền đạt thần kinh khi nó được giải phóng; và (2) phần trong tế bào - như là một kênh đi qua màng sau synap vào bên trong tế bào thần kinh. Sự hoạt động của các protein này cho phép các kênh ion ở màng sau synap mở ra theo 1 trong 2 cách: (1) với thụ thể “ionotropic” - kênh ion mở ra cho phép 1 số loại ion đi vào 1 cách trực tiếp; hoặc (2) với thụ thể “metabotropic” - nó thực hiện chức năng bằng cách hoạt hóa “chất truyền tin thứ 2” - là loại phân tử giúp kích hoạt 1 hoặc nhiều chất bên trong tế bào sau synap. Chính loại chất truyền tin thứ 2 này có thể làm tăng hoặc giảm chức năng của tế bào sau synap.
Kênh Ion
Các kênh ion ở màng sau synap được chia làm 2 loại: (1) “kênh ion dương” - thường là cho phép Na+ đi qua, cũng có khi cho phép K+ và/ hoặc Ca2+ đi qua; và (2) “kênh ion âm” - chủ yếu cho ion Cl- đi qua, và một số lượng nhỏ có anion khác.
“Kênh ion dương” được lót bởi lớp điện tích âm, khi đường kính kênh tăng lên đến kích thước lớn hơn ion natri ngậm nước, nó hút các phân tử điện tích dương (natri) đi vào. Và chính lớp điện tích âm của nó cũng đẩy những anion khác (cl-,…) ra xa, ngăn cản chúng đi qua màng.
Với “kênh ion âm”, khi đường kính kênh chỉ đủ lớn cho các anion đi qua, còn các cation thì bị chặn lại chủ yếu là do kích thước của các cation đó khi ngậm nước là quá lớn, không thể vượt qua.
Khi “kênh ion dương” cho cation đi vào màng tế bào, nó sẽ kích thích các tế bào thần kinh. Và các chất truyền đạt thần kinh làm mở kênh này được gọi là “chất kích thích”. Ngược lại, chất truyền đạt thần kinh làm các anion đi vào gây tác dụng ức chế tế bào được gọi là “chất ức chế”.
Khi được chất truyền đạt thần kinh kích hoạt, các kênh ion chỉ mở ra trong một phần nhỏ của một phần nghìn giây. Và khi chất truyền đạt không còn, các kênh cũng đóng lại 1 cách nhanh chóng. Việc mở và đóng các kênh ion của tế bào thần kinh sau synap được kiểm soát rất nhanh.
Chất truyền tin thứ 2
Rất nhiều chức năng của hệ thần kinh, ví dụ như quá trình nhớ - yêu cầu phải kéo dài từ vài giây đến vài tháng sau khi chất truyền đạt thần kinh ban đầu mất đi. Kênh ion thì không thể đáp ứng yêu cầu trên do nó đã đóng lại sau chưa đầy 1 phần nghìn giây khi chất dẫn truyền thần kinh mất đi. Tuy nhiên, trong nhiều trường hợp, chính các tế bào thần kinh sau synap tự kích hoạt hệ thống hóa học “chất truyền tin thứ 2”, và chính chất truyền tin thứ 2 này gây tác dụng kéo dài kích thích hoặc ức chế.

Hình. Hệ thống “chất truyền tin thứ hai” trong đó chất dẫn truyền từ một tế bào thần kinh ban đầu có thể kích hoạt một tế bào thần kinh thứ hai bằng cách đầu tiên gây ra sự thay đổi biến đổi trong thụ thể giải phóng tiểu đơn vị alpha (α) đã được kích hoạt của protein G vào tế bào chất của tế bào thần kinh thứ hai. Bốn tác động có thể xảy ra tiếp theo của protein G, bao gồm 1, mở kênh ion trong màng của nơ-ron thứ hai; 2, kích hoạt một hệ thống enzym trong màng tế bào thần kinh; 3, kích hoạt một hệ thống enzym nội bào; và / hoặc 4, gây ra phiên mã gen ở nơ-ron thứ hai. Sự trở lại của protein G về trạng thái không hoạt động xảy ra khi guanosine triphosphate (GTP) liên kết với tiểu đơn vị α bị thủy phân thành guanosine diphosphate (GDP) và các tiểu đơn vị β và γ được gắn lại với tiểu đơn vị α.
Có một vài loại hệ thống truyền tin thứ 2, một trong những loại phổ biến nhất là sử dụng một nhóm các protein gọi là protein G. HÌNH 46-7 cho thấy một thụ thể màng protein G. Khi không hoạt động, protein G ở dạng tự do trong bào tương, bao gồm guanosine diphosphate (GDP) và ba thành phần: phần alpha (α) là phần hoạt hóa của protein G; phần beta (β) và phần gamma (γ) - gắn với phần alpha. Khi còn gắn với phần GDP, protein G luôn ở dạng không hoạt động.
Khi receptor được kích hoạt bởi chất truyền đạt thần kinh, nó sẽ thay đổi hình dạng, bộc lộ ra vị trí gắn của nó với phức hợp protein G, sau đó sự gắn kết được xảy ra. Quá trình này cho phép tiểu phần α giải phóng phần GDP, đồng thời nó cũng tách ra khỏi phần β và γ và gắn với guanosine triphosphate (GTP). Phức hợp thu được là di chuyển tự do trong tế bào để thực hiện 1 hay nhiều chức năng tùy thuộc vào tính đặc hiệu của mỗi loại nơ ron. HÌNH 46-7 thể hiện 4 loại biến đổi có thể xảy ra:
1. Mở 1 kênh ion đặc hiệu ở màng sau synap: ví dụ, phức hợp α - GTP làm mở kênh K+, thời gian mở ra thường được kéo dài, trong khi với cơ chế trực tiếp, kênh sẽ đóng lại gần như ngay lập tức.
2. Hoạt hóa monophosphate adenosine cyclic (CAMP) hoặc cyclic guanosine monophosphate (cGMP) trong tế bào nơron. Nhớ lại rằng một trong hai cAMP hoặc cGMP có thể kích hoạt bộ máy chuyển hóa có tính đặc hiệu cao trong tế bào thần kinh, do đó, có thể dẫn đến nhiều thay đổi hóa học trong tế bào bao gồm cả những thay đổi lâu dài trong cấu trúc hóa học của chính nó, dẫn đến thay đổi tính kích thích của tế bào thần kinh.
3. Trực tiếp hoạt hóa 1 hay nhiều loại enzym nội bào, sau đó các enzym này có thể thực hiện chức năng của nó trong tế bào.
4. Kích hoạt phiên mã gen: là một trong những cơ chế hoạt động quan trọng nhất của chất truyền tin thứ 2, bởi phiên mã gen có thể hình thành protein mới trong tế bào thần kinh dẫn đến thay đổi cấu trúc hay bộ máy chuyển hóa của chính nó. Cơ chế này rất quan trọng đặc biết trong quá trình ghi nhớ một cách lâu dài.
Khi phức hợp α - GTP bị thủy phân và tiểu phần α lại gắn với GDP, hệ thống truyền tin thứ 2 sẽ bị bất hoạt. Sau đó phần α kết hợp lại với phần β và γ trả lại phức hợp protein G không hoạt động.
Rõ ràng việc kích hoạt các hệ thống truyền tin thứ hai trong tế bào thần kinh, cho dù là các protein G hoặc các loại protein khác, là cực kỳ quan trọng đối với việc thay đổi đặc điểm đáp ứng lâu dài của các tế bào thần kinh.
Bài viết cùng chuyên mục
Vận chuyển thyroxine và triiodothyronine tới các mô
Hầu hết chu kỳ tiềm tàng và phát huy tác dụng của hormon có thể do gắn với protein cả trong huyết tương và trong tế bào mô, và bởi bài tiết chậm sau đó.
Hàng rào máu dịch não tủy và hàng rào máu não
Hàng rào tồn tại ở cả đám rối mạch mạc và ở quanh mao mạch não tại hầu hết các vùng nhu mô não ngoại trừ một số vùng như vùng dưới đồi, tuyến tùng và vùng postrema, nơi các chất khuếch tán dễ dàng vào mô não.
Canxi và photphatase trong dịch ngoại bào và huyết tương
Những tế bào dễ bị kích thích rất nhạy cảm với sự thay đổi của nồng độ ion canxi, nếu tăng quá ngưỡng bình thường gây giảm hoạt động của hệ thần kinh; ngược lại, giảm nồng độ canxi trong máu (hạ canxi máu) làm cho các tế bào thần kinh trở nên dễ bị kích thích hơn.
Cảm giác xúc giác: sự phát hiện và dẫn truyền
Mặc dù, cảm giác đụng chạm, áp lực và rung là phân loại thường gặp khi phân chia các cảm giác, nhưng chúng được nhận biết bởi các loại receptor giống nhau.
Chuyển hóa của thai nhi
Thai có khả năng dự trữ chất béo và protein, hầu hết chất béo được tổng hợp từ đường. Những vẫn đề đặc biệt chuyển hóa của thai liên quan đến calci, phosphate, sắt và một số vitamin.
Điều chỉnh lượng thức ăn ăn vào và dự trữ năng lượng của cơ thể
Duy trì sự cung cấp năng lượng đầy đủ trong cơ thể quan trọng đến nỗi mà rất nhiều các cơ chế kiểm soát ngắn hạn và dài hạn tồn tại không chỉ điều chỉnh năng lượng hấp thu mà cả năng lượng tiêu thụ và năng lượng dự trữ.
Điều hòa lưu lượng máu trong thời gian dài
Nếu mô hoạt động quá mức quá lâu, yêu cầu tăng số lượng oxy và các chất dinh dưỡng, các tiểu động mạch và các mao mạch thường tăng cả số lượng và kích thước trong một vài tuần để cân xứng với nhu cầu của mô.
Sự vận chuyển O2 trong máu và mô kẽ
Các loại khí có thể di chuyển từ nơi này đến nơi khác bằng cách khuếch tán và nguyên nhân của sự vận chuyển này là sự chênh lệch về phân áp từ vị trí đầu tiên cho tới vị trí tiếp theo.
Sinh lý cầm máu
Thành mạch bị thương tổn càng nhiều thì co mạch càng mạnh, sự co mạch tại chỗ có thể kéo dài nhiều phút đến vài giờ.
Sóng T trên điện tâm đồ: những bất thường khử cực
Khi thiếu máu xảy ra ở 1 phần của tim, quá trình khử cực của vùng đó giảm không tương xứng với khử cực ở các vùng khác. Hệ quả là sự thay đổi của sóng T.
Hormone tăng trưởng (GH) kích thích phát triển sụn và xương
Khi đáp ứng với kích thích của GH, các xương dài phát triển chiều dài của lớp sụn đầu xương, nguyên bào xương ở vỏ xương và trong một số khoang xương gây lắng đọng xương mới vào bề mặt của các xương cũ.
Các hệ thống điều hòa huyết áp
Hệ thống đàu tiên đáp ứng lại những thay đổi cấp tính ở huyết áp động mạch là hệ thống thần kinh. Cơ chế thận để kiểm soát lâu dài của huyết áp. Tuy nhiên, có những mảnh khác nhau của vấn để.
Sinh lý nội tiết vùng dưới đồi
Các nơron vùng dưới đồi bài tiết các hormon giải phóng RH và các hormon ức chế IRH có tác dụng ức chế hoặc kích thích hoạt động thùy trước tuyến yên.
Các cơ chế giữ ổn định mắt của tiền đình và yếu tố khác
Mỗi thời điểm đầu bị quay đột ngột, những tín hiệu từ các ống bán khuyên khiến cho mắt quay theo một hướng cân bằng và đối diện với sự quay của đầu. Chuyển động đó có nguồn gốc từ các phản xạ từ nhân tiền đình và bó dọc giữa.
Sinh lý bạch cầu máu
Toàn bộ quá trình sinh sản, và biệt hoá tạo nên các loại bạch cầu hạt, và bạch cầu mono diễn ra trong tuỷ xương.
Hormon điều hòa chuyển hóa Protein trong cơ thể
Hormon tăng trưởng làm tăng tổng hợp protein tế bào, Insulin là cần thiết để tổng hợp protein, Glucocorticoids tăng thoái hóa hầu hết protein mô, Testosterone tăng lắng động protein mô.
Sinh lý tuyến tuỵ nội tiết
Tụy nằm trong khung tá tràng, sau dạ dày. Trọng lượng 70-80g. Dài 10-18cm, cao 6cm, dày 1-3cm. Tụy nội tiết gồm những đảo Langerhans (gồm từ 1-2 triệu đảo), là những tế bào tụ thành từng đám, chiếm 1g tổ chức tụy, thường ở gần mạch máu.
Báo động hoặc phản ứng stress của hệ thần kinh giao cảm
Hệ giao cảm cũng đặc biệt được kích hoạt mạnh mẽ trong nhiều trạng thái cảm xúc. Ví dụ, trong trạng thái giận dữ, vùng dưới đồi sẽ bị kích thích, các tín hiệu sẽ được truyền xuống qua hệ thống lưới của thân não.
Nhịp nhanh kịch phát: rối loạn nhịp tim
Cơn nhịp nhanh kịch phát thường bị dừng lại bởi đáp ứng của thần kinh phế vị. Đáp ứng thần kinh phế vị gây bằng cách kích thích vào vùng thắt của xoang động mạch cảnh, đủ để gây ra đáp ứng ngừng cơn nhịp nhanh.
Kiểm soát tích cực lưu lượng máu cục bộ
Cơ chế thay đổi chuyển hóa mô hoặc lượng oxy máu làm thay đổi dòng máu vẫn chưa được hiểu đầy đủ, nhưng 2 giả thuyết chính này đến nay đã được đưa ra: giả thuyết co mạch và giả thuyêt về nhu cầu oxy.
Sự dẫn truyền cảm giác: đặc điểm trong con đường trước bên
Hệ trước bên là hệ thống dẫn truyền chưa phát triển bằng hệ thống cột tủy sau - dải cảm giác giữa. Thậm chí, các phương thức cảm giác nhất định chỉ được dẫn truyền trong hệ thống này.
Vận chuyển dịch ngoại bào và trộn lẫn máu trong hệ tuần hoàn
Thành của các mao mạch cho thấm qua hầu hết các phân tử trong huyết tương của máu,ngoại trừ thành phần protein huyết tương, có thể do kích thước của chúng quá lớnđể đi qua các mao mạch.
Trở kháng thành mạch với dòng máu của hệ tuần hoàn
Trở kháng là sự cản trở với dòng máu trong mạch, không thể đo bằng phương tiện trực tiếp, chỉ được tính từ những công thức, phép đo của dòng máu và sự chênh lệch áp lực giữa 2 điểm trên mạch.
Acid béo với alpha Glycerophosphate để tạo thành Triglycerides
Quá trình tổng hợp triglycerides, chỉ có khoảng 15% năng lượng ban đầu trong đường bị mất đi dưới dạng tạo nhiệt, còn lại 85% được chuyển sang dạng dự trữ triglycerides.
Miễn dịch ở trẻ sơ sinh
Trẻ sơ sinh hiếm khi bị dị ứng. Tuy nhiên, vài tháng sau đó, khi kháng thể của nó bắt đầu được hình thành, những trạng thái dị ứng nặng có thể tiến triển.
