- Trang chủ
- Sách y học
- Sinh lý y học
- Synap thần kinh trung ương: giải phẫu sinh lý của synap
Synap thần kinh trung ương: giải phẫu sinh lý của synap
Nhiều nghiên cứu về synap cho thấy chúng có nhiều hình dáng giải phẫu khác nhau, nhưng hầu hết chúng nhìn như là cái nút bấm hình tròn hoặc hình bầu dục, do đó, nó hay được gọi là: cúc tận cùng, nút synap, hay mụn synap.
Biên tập viên: Trần Tiến Phong
Đánh giá: Trần Trà My, Trần Phương Phương
Thông tin được truyền trong hệ thần kinh trung ương chủ yếu nhờ việc tạo điện thế hoạt động qua một loạt các tế bào thần kinh nối tiếp nhau, được gọi là các xung thần kinh. Tuy nhiên, mỗi một xung động thần kinh từ tế bào này (1) có thể bị chặn lại không tiếp tục truyền sang tế bào khác; (2) có thể được chuyển đổi từ một xung duy nhất thành chuỗi xung lặp đi lặp lại; hoặc (3) cũng có thể được kết hợp với xung động của tế bào thần kinh khác để tạo thành một chuỗi xung phức tạp tới tế bào thần kinh tiếp.

Hình. Một tế bào thần kinh vận động phía trước điển hình hiển thị các đầu cuối trước synap trên tế bào soma thần kinh và đuôi gai. Cũng lưu ý sợi trục đơn.
Một tế bào thần kinh vận động điển hình ở sừng trước tủy sống. Nó bao gồm 3 bộ phận cơ bản: thân tế bào - phần chính của tế bào thần kinh; sợi trục duy nhất - kéo dài từ thân rời khỏi tủy sống tới dây thần kinh ngoại vi; sợi nhánh - với số lượng rất lớn từ thân tế bào tỏa ra xung quanh. Có đến 10.000 đến 200.000 núm synap nhỏ được gọi là cúc synap nằm ở bề mặt của các sợi nhánh và thân của tế bào thần kinh vận động, trong đó 80-95% ở sợi nhánh và chỉ có 5-20% ở thân tế bào. Nhiều cúc synap tiết ra chất dẫn truyền thần kinh có tác dụng kích thích, một số khác lại có tác dụng ức chế sợi thần kinh sau synap.
Các tế bào thần kinh ở các phần khác nhau của tủy sống và não bộ thì có sự khác nhau ở: (1) kích thước của thân tế bào; (2) kích thước, số lượng, độ dài của các sợi nhánh - từ rất ngắn gần như bằng không đến vài cm; (3) độ dài và kích thước của sợi trục; (4) số lượng các cúc synap - từ một vài cho tới 200.000 trạm. Đặc điểm đó giúp cho các tế bào thần kinh ở mỗi nơi khác nhau thì phản ứng lại các tín hiệu đến bằng những cách khác nhau, do đó hệ thần kinh thực hiện được nhiều chức năng.
Cúc synap
Nhiều nghiên cứu về synap cho thấy chúng có nhiều hình dáng giải phẫu khác nhau, nhưng hầu hết chúng nhìn như là cái nút bấm hình tròn hoặc hình bầu dục, do đó, nó hay được gọi là: cúc tận cùng, nút synap, hay mụn synap.
Trạm trước synap được ngăn cách với trạm sau synap bởi khe synap có chiều rộng vào khoảng 200 đến 300 Angtron. Ở cúc tận cùng của nơron có 2 cấu trúc quan trọng để thực hiện chức năng của nó là túi chứa chất dẫn truyền và ty lạp thể. Túi chứa chất dẫn truyền khi giải phóng chất truyền đạt thần kinh vào khe synap sẽ kích thích hoặc ức chế nơ ron sau synap phụ thuộc vào loại receptor ở màng sau synap. Còn ty lạp thể cung cấp adenosine triphosphate (ATP) - nguồn năng lượng để tổng hợp chất truyền đạt thần kinh mới.
Cơ chế giải phóng chất dẫn truyền thần kinh - vai trò của ion canxi
Màng của trạm trước synap được gọi là màng trước synap - nó bao gồm 1 số lượng lớn kênh canxi voltagegated. Khi điện thế hoạt động khử cực màng trước synap, các kênh canxi này sẽ mở ra cho phép ion canxi đi từ ngoài vào trong tế bào trước synap. Lượng ion canxi đi vào sẽ quyết định số lượng chất truyền đạt thần kinh được giải phóng vào khe synap. Cơ chế chính xác của mối liên hệ này chưa được biết rõ, nhưng có những giả thuyết dưới đây được nêu ra.
Khi ion canxi đi vào bên trong trạm trước synap, nó sẽ gắn vào các phân tử protein đặc hiệu ở màng trong tế bào trước synap tạo ra cấu trúc được gọi là: điểm giải phóng. Những điểm giải phóng này mới cho phép một số túi chứa chất dẫn truyền giải phóng các chất dẫn truyền vào khe synap.
Tác dụng của chất truyền đạt thần kinh lên tế bào sau synap - chức năng của “protein thụ thể”
Màng sau synap chứa 1 số lượng lớn “protein thụ thể” (HÌNH 46-5A). Các protein thụ thể này có 2 thành phần quan trọng là: (1) phần kết hợp - nhô vào khe synap và là nơi kết hợp trực tiếp với chất truyền đạt thần kinh khi nó được giải phóng; và (2) phần trong tế bào - như là một kênh đi qua màng sau synap vào bên trong tế bào thần kinh. Sự hoạt động của các protein này cho phép các kênh ion ở màng sau synap mở ra theo 1 trong 2 cách: (1) với thụ thể “ionotropic” - kênh ion mở ra cho phép 1 số loại ion đi vào 1 cách trực tiếp; hoặc (2) với thụ thể “metabotropic” - nó thực hiện chức năng bằng cách hoạt hóa “chất truyền tin thứ 2” - là loại phân tử giúp kích hoạt 1 hoặc nhiều chất bên trong tế bào sau synap. Chính loại chất truyền tin thứ 2 này có thể làm tăng hoặc giảm chức năng của tế bào sau synap.
Kênh Ion
Các kênh ion ở màng sau synap được chia làm 2 loại: (1) “kênh ion dương” - thường là cho phép Na+ đi qua, cũng có khi cho phép K+ và/ hoặc Ca2+ đi qua; và (2) “kênh ion âm” - chủ yếu cho ion Cl- đi qua, và một số lượng nhỏ có anion khác.
“Kênh ion dương” được lót bởi lớp điện tích âm, khi đường kính kênh tăng lên đến kích thước lớn hơn ion natri ngậm nước, nó hút các phân tử điện tích dương (natri) đi vào. Và chính lớp điện tích âm của nó cũng đẩy những anion khác (cl-,…) ra xa, ngăn cản chúng đi qua màng.
Với “kênh ion âm”, khi đường kính kênh chỉ đủ lớn cho các anion đi qua, còn các cation thì bị chặn lại chủ yếu là do kích thước của các cation đó khi ngậm nước là quá lớn, không thể vượt qua.
Khi “kênh ion dương” cho cation đi vào màng tế bào, nó sẽ kích thích các tế bào thần kinh. Và các chất truyền đạt thần kinh làm mở kênh này được gọi là “chất kích thích”. Ngược lại, chất truyền đạt thần kinh làm các anion đi vào gây tác dụng ức chế tế bào được gọi là “chất ức chế”.
Khi được chất truyền đạt thần kinh kích hoạt, các kênh ion chỉ mở ra trong một phần nhỏ của một phần nghìn giây. Và khi chất truyền đạt không còn, các kênh cũng đóng lại 1 cách nhanh chóng. Việc mở và đóng các kênh ion của tế bào thần kinh sau synap được kiểm soát rất nhanh.
Chất truyền tin thứ 2
Rất nhiều chức năng của hệ thần kinh, ví dụ như quá trình nhớ - yêu cầu phải kéo dài từ vài giây đến vài tháng sau khi chất truyền đạt thần kinh ban đầu mất đi. Kênh ion thì không thể đáp ứng yêu cầu trên do nó đã đóng lại sau chưa đầy 1 phần nghìn giây khi chất dẫn truyền thần kinh mất đi. Tuy nhiên, trong nhiều trường hợp, chính các tế bào thần kinh sau synap tự kích hoạt hệ thống hóa học “chất truyền tin thứ 2”, và chính chất truyền tin thứ 2 này gây tác dụng kéo dài kích thích hoặc ức chế.

Hình. Hệ thống “chất truyền tin thứ hai” trong đó chất dẫn truyền từ một tế bào thần kinh ban đầu có thể kích hoạt một tế bào thần kinh thứ hai bằng cách đầu tiên gây ra sự thay đổi biến đổi trong thụ thể giải phóng tiểu đơn vị alpha (α) đã được kích hoạt của protein G vào tế bào chất của tế bào thần kinh thứ hai. Bốn tác động có thể xảy ra tiếp theo của protein G, bao gồm 1, mở kênh ion trong màng của nơ-ron thứ hai; 2, kích hoạt một hệ thống enzym trong màng tế bào thần kinh; 3, kích hoạt một hệ thống enzym nội bào; và / hoặc 4, gây ra phiên mã gen ở nơ-ron thứ hai. Sự trở lại của protein G về trạng thái không hoạt động xảy ra khi guanosine triphosphate (GTP) liên kết với tiểu đơn vị α bị thủy phân thành guanosine diphosphate (GDP) và các tiểu đơn vị β và γ được gắn lại với tiểu đơn vị α.
Có một vài loại hệ thống truyền tin thứ 2, một trong những loại phổ biến nhất là sử dụng một nhóm các protein gọi là protein G. HÌNH 46-7 cho thấy một thụ thể màng protein G. Khi không hoạt động, protein G ở dạng tự do trong bào tương, bao gồm guanosine diphosphate (GDP) và ba thành phần: phần alpha (α) là phần hoạt hóa của protein G; phần beta (β) và phần gamma (γ) - gắn với phần alpha. Khi còn gắn với phần GDP, protein G luôn ở dạng không hoạt động.
Khi receptor được kích hoạt bởi chất truyền đạt thần kinh, nó sẽ thay đổi hình dạng, bộc lộ ra vị trí gắn của nó với phức hợp protein G, sau đó sự gắn kết được xảy ra. Quá trình này cho phép tiểu phần α giải phóng phần GDP, đồng thời nó cũng tách ra khỏi phần β và γ và gắn với guanosine triphosphate (GTP). Phức hợp thu được là di chuyển tự do trong tế bào để thực hiện 1 hay nhiều chức năng tùy thuộc vào tính đặc hiệu của mỗi loại nơ ron. HÌNH 46-7 thể hiện 4 loại biến đổi có thể xảy ra:
1. Mở 1 kênh ion đặc hiệu ở màng sau synap: ví dụ, phức hợp α - GTP làm mở kênh K+, thời gian mở ra thường được kéo dài, trong khi với cơ chế trực tiếp, kênh sẽ đóng lại gần như ngay lập tức.
2. Hoạt hóa monophosphate adenosine cyclic (CAMP) hoặc cyclic guanosine monophosphate (cGMP) trong tế bào nơron. Nhớ lại rằng một trong hai cAMP hoặc cGMP có thể kích hoạt bộ máy chuyển hóa có tính đặc hiệu cao trong tế bào thần kinh, do đó, có thể dẫn đến nhiều thay đổi hóa học trong tế bào bao gồm cả những thay đổi lâu dài trong cấu trúc hóa học của chính nó, dẫn đến thay đổi tính kích thích của tế bào thần kinh.
3. Trực tiếp hoạt hóa 1 hay nhiều loại enzym nội bào, sau đó các enzym này có thể thực hiện chức năng của nó trong tế bào.
4. Kích hoạt phiên mã gen: là một trong những cơ chế hoạt động quan trọng nhất của chất truyền tin thứ 2, bởi phiên mã gen có thể hình thành protein mới trong tế bào thần kinh dẫn đến thay đổi cấu trúc hay bộ máy chuyển hóa của chính nó. Cơ chế này rất quan trọng đặc biết trong quá trình ghi nhớ một cách lâu dài.
Khi phức hợp α - GTP bị thủy phân và tiểu phần α lại gắn với GDP, hệ thống truyền tin thứ 2 sẽ bị bất hoạt. Sau đó phần α kết hợp lại với phần β và γ trả lại phức hợp protein G không hoạt động.
Rõ ràng việc kích hoạt các hệ thống truyền tin thứ hai trong tế bào thần kinh, cho dù là các protein G hoặc các loại protein khác, là cực kỳ quan trọng đối với việc thay đổi đặc điểm đáp ứng lâu dài của các tế bào thần kinh.
Bài viết cùng chuyên mục
Chức năng vận động của thân não
Thân não hoạt động giống như một trạm chung chuyển cho các mệnh lệnh từ trung tâm thần kinh cao hơn. Ở phần tiếp theo, chúng ta sẽ bàn luận về vai trò của thân não trong việc chi phối cử động của toàn bộ cơ thể và giữ thăng bằng.
Chức năng dự báo của hệ thống ống bán khuyên để duy trì sự thăng bằng
Các ống bán khuyên dự đoán được trước rằng sự mất thăng bằng sắp xảy ra và do đó khiến các trung tâm giữ thăng bằng thực hiện sự điều chỉnh phù hợp từ trước, giúp người đó duy trì được thăng bằng.
Cấu tạo tế bào cơ thể người
Để hiểu được chức năng của các cơ quan và các cấu trúc khác của cơ thể, đầu tiên chúng ta cần hiểu được những cấu trúc cơ bản của tế bào và chức năng của những bộ phận cấu thành nên nó.
Các hệ thống điều hòa huyết áp
Hệ thống đàu tiên đáp ứng lại những thay đổi cấp tính ở huyết áp động mạch là hệ thống thần kinh. Cơ chế thận để kiểm soát lâu dài của huyết áp. Tuy nhiên, có những mảnh khác nhau của vấn để.
Dạng cao nguyên của điện thế hoạt động màng tế bào
Nguyên nhân của cao nguyên điện thế hoạt động màng tế bào là một sự kết hợp của nhiều yếu tố. Đầu tiên, trong cơ tim, hai loại kênh tưởng niệm đến quá trình khử cực.
Kênh cổng điện thế natri và kali
Khi các kênh kali mở, chúng vẫn mở cho toàn bộ thời gian điện thế màng hoạt động và không đóng lại cho đến khi điện thế màng được giảm trở lại một giá trị âm.
Chức năng dự trữ máu của các tĩnh mạch
Các tĩnh mạch ngoại vi cũng có thể đẩy máu đi bằng cách cũng được gọi là “bơm tĩnh mạch” và chúng thậm chí cũng giúp điều hoà lượng máu ra từ tim.
Dẫn truyền synap: một số đặc điểm đặc biệt
Quá trình thông tin được truyền qua synap phải qua nhiều bước: đưa các bọc nhỏ xuống, hòa màng với màng của cúc tận cùng, chất truyền đạt giải phóng và khuếch tán trong khe synap, gắn với receptor ở màng sau synap, mở kênh ion gây khử cực màng.
Chất dẫn truyền thần kinh: phân tử nhỏ tốc độ và tái chế
Trong hầu hết các trường hợp, các chất dẫn truyền thần kinh có phân tử nhỏ được tổng hợp tại bào tương của trạm trước synap và được vận chuyển tích cực vào túi chứa chất dẫn truyền.
Hình thành acid acetoacetic trong gan và sự vận chuyển trong máu
Các acid acetoacetic, acid β-hydroxybutyric, và acetone khuếch tán tự do qua màng tế bào gan và được vận chuyển trong máu tới các mô ngoại vi, ở đây, chúng lại được khuếch tán vào trong tế bào.
Chức năng của vỏ Limbic
Kích thích vùng khác nhau của vỏ Limbic sẽ gợi ra chức năng thực sự của mỗi vùng. Tuy nhiên, nhiều hành vi có thể được suy ra do kích thích một số vùng đặc biệt của vỏ Limbic.
Trở kháng thành mạch với dòng máu của hệ tuần hoàn
Trở kháng là sự cản trở với dòng máu trong mạch, không thể đo bằng phương tiện trực tiếp, chỉ được tính từ những công thức, phép đo của dòng máu và sự chênh lệch áp lực giữa 2 điểm trên mạch.
Mức độ thiếu oxy mà một trẻ sơ sinh có thể chịu đựng được
Khi phế nang mở, hô hấp có thể bị ảnh hưởng thêm với vận động hô hấp tương đối yếu. May mắn thay, hít vào của trẻ bình thường rất giàu năng lượng; Có khả năng tạo ra áp lực âm trong khoang màng phổi lên đến 60mmHg.
Nghiên cứu chức năng hô hấp: ký hiệu và biểu tượng thường sử dụng trong thăm dò
Sử dụng các ký hiệu này, chúng tôi trình bày ở đây một số bài tập đại số đơn giản cho thấy một số mối quan hệ qua lại giữa các thể tích và dung tích phổi, nên suy nghĩ thấu đáo và xác minh những mối tương quan này.
Cấu tạo và chức năng các thành phần của răng
Cấu trúc tinh thể của muối làm cho men răng vô cùng cứng, cứng hơn nhiều so với ngà răng. Ngoài ra, lưới protein đặc biệt, mặc dù chỉ chiếm khoảng 1 phần trăm khối lượng men răng, nhưng làm cho răng có thể kháng axit, enzym.
Điều hòa tuần hoàn: vai trò hệ thống thần kinh tự chủ
Phần quan trọng nhất của hệ thần kinh tự chủ đều hòa tuần hoàn là hệ thần kinh giao cảm, hệ thần kinh phó giao cảm cũng đóng góp một phần khá quan trọng.
Tác dụng của corticoid lên chuyển hóa chất béo
Tăng huy động chất béo do cortisol giúp hệ thống chuyển hóa của tế bào sử dụng glucose từ sử dụng acid béo để sinh năng lượng trong khi đói hoăc các căng thẳng khác.
Điều hòa bài tiết cortisol ở vỏ thượng thận do tuyến yên
ACTH kích thích kiểm soát bài tiết của vỏ thượng thận là kích hoạt các protein enzyme kinase A, làm chuyển hóa ban đầu của cholesterol thành Pregnenolone.
Kiểm soát huyết áp động mạch: angiotensin II làm cho thận giữ muối và nước
Angiotensin II là một trong những chất kích thích bài tiết aldosterone mạnh bởi các tuyến thượng thận, như chúng ta sẽ thảo luận liên quan đến điều hòa thể dịch và liên quan đến chức năng tuyến thượng thận.
Sinh lý điều hòa lưu lượng máu não
Lưu lượng máu não của một người trưởng thành trung bình là 50 đến 65 ml/100 gam nhu mô não mỗi phút. Với toàn bộ não là từ 750 đến 900 ml/ phút. Theo đó, não bộ chỉ chiếm 2% trọng lượng cơ thể nhưng nhận 15% cung lượng tim lúc nghỉ.
Giai đoạn trơ sau điện thế màng hoạt động: không có thiết lập kích thích
Nồng độ ion canxi dịch ngoại bào cao làm giảm tính thấm của màng các ion natri và đồng thời làm giảm tính kích thích. Do đó, các ion canxi được cho là một yếu tố “ổn định”.
Hormone tăng trưởng (GH) gây các ảnh hưởng lên chuyển hóa
Hormone tăng trưởng GH tác động trên sự phát triển cơ thể, tác dụng trên phức hợp chuyển hóa, gồm tăng tạo protein, tăng huy động các acid béo từ mô mỡ, làm giảm sử dụng glucose toàn cơ thể.
Điều hòa vận động: vai trò thoi cơ trong các vận động chủ động
Bất cứ khi nào phải thực hiện một động tác yêu cầu độ chính xác và tỉ mỉ, sự kích thích thích hợp từ cấu tạo lưới thân não lên các suốt cơ sẽ giúp duy trì tư thế của các khớp quan trọng, giúp thực hiện các động tác chi tiết một cách khéo léo.
Hormone tăng trưởng (GH) kích thích phát triển sụn và xương
Khi đáp ứng với kích thích của GH, các xương dài phát triển chiều dài của lớp sụn đầu xương, nguyên bào xương ở vỏ xương và trong một số khoang xương gây lắng đọng xương mới vào bề mặt của các xương cũ.
Vi tuần hoàn não: hệ thống mao mạch não
Thành của các tiểu động mạch nhỏ sát mao mạch trở lên rất dày ở những người có tăng huyết áp, và các tiểu động mạch đó duy trì tình trạng co thắt rõ rệt liên tục nhằm ngăn áp lực cao truyền đến mao mạch.
