Đặc điểm phân tử của các sợi cơ co bóp

2020-07-24 04:29 PM

Một đặc tính của đầu myosin mà cần thiết cho sự co cơ là nó có chức năng như một enzyme adenosine triphosphatase (ATPase).

Biên tập viên: Trần Tiến Phong

Đánh giá: Trần Trà My, Trần Phương Phương

Các sợi myosin là bao gồm của các phân tử myosin kép

Mỗi một phân tử myosin, thể hiện trong hình A, có trọng lượng phân tử khoảng 480.000. Hình B cho thấy tổ chức của nhiều phân tử để tạo thành một sợi myosin, cũng như sự tương tác của sợi này trên một mặt với các đầu tận của hai sợi actin.

Phân tử myosi

Hình. A, Phân tử myosin. B, Sự kết hợp của nhiều phân tử myosin tạo thành một sợi myosin. Cũng được thể hiện là hàng ngàn các cầu nối chéo myosin và sự tương tác giữa các đầu của các cầu nối chéo với các sợi actin liền kề.

Phân tử myosin (xem hình A) bao gồm sáu chuỗi polypeptide - hai chuỗi nặng, mỗi chuỗi có trọng lượng phân tử khoảng 200.000, và bốn chuỗi nhẹ với trọng lượng phân tử khoảng 20.000 mỗi chuỗi. Hai chuỗi nặng quấn xoắn quanh nhau để tạo thành một chuỗi xoắn kép, được gọi là đuôi của phân tử myosin. Một đầu của mỗi chuỗi được gấp song phương thành một cấu trúc polypeptide hình cầu gọi là một đầu myosin.

Như vậy, có hai đầu tự do ở một đầu của chuỗi xoắn kép phân tử myosin. Bốn chuỗi nhẹ cũng là một phần của đầu myosin, hai ở mỗi đầu. Các chuỗi nhẹ này giúp kiểm soát chức năng của đầu trong quá trình co cơ.

Sợi myosin được tạo thành từ 200 hoặc nhiều hơn các phân tử myosin riêng lẻ. Phần trung tâm của một trong các sợi này được thể hiện trong hình hình B, sự xuất hiện các đuôi của các phân tử myosin bó lại với nhau để hình thành phần thân của sợi, trong khi nhiều đầu của các phân tử treo bên ngoài đến các bên của thân. Ngoài ra, một phần của thân của mỗi phân tử myosin treo đến bên cạnh cùng với đầu, do đó cấp một nhánh gửi tới đầu ngoài từ thân, như thể hiện trong hình. Các nhánh nhô ra và các đầu cùng nhau được gọi là các cầu nối chéo. Mỗi cầu nối chéo linh hoạt ở hai điểm gọi là khớp nối-một trong những nơi nhánh rời khỏi thân của sợi myosin, và khác nơi mà đầu gắn vào nhánh. Các nhánh có khớp nối cho phép các đầu được hoặc kéo dài xa ra ngoài từ thân của sợi myosin hoặc đưa lại gần tới thân. Các đầu co khớp nối lần lượt tham gia vào quá trình co bóp thực tế, như thảo luận trong các phần sau đây.

Tổng chiều dài của mỗi sợi myosin là không đổi - gần như chính xác 1,6µm. Lưu ý, tuy nhiên, không có cầu nối ngang các đầu ở trung tâm của sợi myosin cho một khoảng cách khoảng 0,2µm vì các nhánh có khớp nối kéo dài đi xa từ trung tâm.

Bây giờ, để hoàn thành bức tranh, sợi myosin xoắn lại do đó mỗi cặp liên tiếp của các cầu nối chéo có trục di dời từ cặp trước đó bằng 120 độ. Việc xoắn này đảm bảo rằng các cầu nối ngang kéo dài ở tất cả các hướng xung quanh sợi.

Adenosine Triphosphatase hoạt động của đầu myosin

Một đặc tính khác của đầu myosin mà cần thiết cho sự co cơ là nó có chức năng như một enzyme adenosine triphosphatase (ATPase). Như giải thích sau, đặc tính này cho phép đầu tách ra ATP và sử dụng năng lượng có nguồn gốc từ liên kết cao năng phosphat của ATP để nạp năng lượng cho quá trình co bóp.

Các sợi Actin bao gồm có actin, tropomyosin, và troponin

Trụ cột của sợi actin là một phân tử protein F-actin sợi kép, được miêu tả bởi hai sợi màu sáng hơn trong hình. Hai sợi được quấn trong một chuỗi xoắn theo cách tương tự như phân tử myosin.

Sợi Actin

Hình. Sợi Actin, bao gồm hai chuỗi xoắn ốc của các phân tử F-actin và hai sợi phân tử tropomyosin phù hợp với các rãnh giữa các sợi Actin. Được gắn vào một đầu của mỗi phân tử tropomyosin là một phức hợp troponin bắt đầu sự co lại.

Mỗi sợi của chuỗi xoắn kép F-actin bao gồm các phân tử G-actin polyme hóa, mỗi cái có một trọng lượng phân tử khoảng 42.000. Kèm theo mỗi một của các phân tử G-actin là một phân tử ADP. Các phân tử ADP này được tin là các điểm hoạt động trên các sợi actin mà cùng các cầu nối chéo của các sợi myosin tương tác để gây co cơ. Các điểm hoạt động trên hai sợi F-actin của chuỗi xoắn kép xen kẽ nhau, cho một điểm hoạt động trên toàn bộ sợi actin là khoảng 2,7nm mỗi điểm.

Mỗi sợi actin dài khoảng 1µm. Nền của các sợi actin được chèn mạnh vào trong các đĩa Z; các đầu của các sợi nhô ra ở cả hai chiều nằm trong không gian giữa các các phân tử myosin, như thể hiện trong hình.

Các phân tử Tropomyosin

Sợi actin cũng chứa một loại protein khác, tropomyosin. Mỗi phân tử của tropomyosin có trọng lượng phân tử là 70.000 và chiều dài là 40 nm.

Những phân tử này được quấn xoắn xung quanh các mặt của chuỗi xoắn F-actin. Ở trạng thái nghỉ, các phân tử tropomyosin nằm trên đầu của các điểm hoạt động của các sợi actin bởi vậy không thể xảy ra thu hút giữa các sợi actin và myosin để gây ra co bóp.

Troponin và vai trò của nó trong sự co cơ

Gắn không liên tục dọc theo hai bên của các phân tử tropomyosin là những phân tử protein bổ sung được gọi là troponin. Các phân tử protein này thực chất là phức hợp của ba tiểu đơn vị protein liên kết lỏng lẻo, mỗi một trong số đó đóng một vai trò đặc thù trong việc kiểm soát sự co cơ.

Một trong những tiểu đơn vị (troponin I) có ái lực mạnh với actin, tiểu đơn vị khác (troponin T) với tropomyosin, và cái thứ ba (troponin C) với các ion canxi. Phức hợp này được cho là gắn tropomyosin với actin. Ái lực mạnh của troponin với các ion canxi được cho là khởi đầu quá trình co bóp, như được giải thích trong phần tiếp theo.

Sự tương tác của một sợi myosin, hai sợi actin, và các ion canxi để gây ra co bóp.

Sự ức chế của sợi Actin bởi phức hợp Troponin – Tropomyosin

Một actin sợi hoàn toàn không có sự hiện diện của phức hợp troponin-tropomyosin (nhưng có sự hiện diện của các ion magiê và ATP) liên kết ngay lập tức và mạnh với các đầu của các phân tử myosin. Sau đó, nếu phức hợp troponin-tropomyosin được thêm vào các sợi actin, sự liên kết giữa myosin và actin không diễn ra. Do đó, người ta tin rằng các điểm hoạt động trên sợi actin bình thường của cơ giãn là bị ức chế hoặc bị che phủ vị trí bởi phức hợp troponintropomyosin. Do đó, các điểm không thể gắn với các đầu của các sợi myosin để gây ra co bóp. Trước khi co bóp có thể xảy ra, tác dụng ức chế của chính phức hợp troponin-tropomyosin phải bị ức chế.

Sự hoạt hóa của sợi Actin bởi các ion canxi

Trong sự hiện diện của một lượng lớn của các ion canxi, tác dụng ức chế của troponin-tropomyosin trên các sợi actin chính nó lại bị ức chế. Cơ chế của sự ức chế này chưa được biết, nhưng có một giả thiết như sau: Khi các ion canxi kết hợp với troponin C, mỗi phân tử có thể liên kết mạnh với tối đa bốn ion canxi, phức hợp troponin được cho là trải qua một sự thay đổi về hình dạng mà trong một số cách kéo trên phân tử tropomyosin và di chuyển sâu hơn vào các rãnh giữa hai sợi actin. Hoạt động này “bộc lộ” các vị trí hoạt động của actin, do đó cho phép các vị trí hoạt động này thu hút các đầu của cầu nối chéo myosin và khiến sự co bóp được tiến hành. Mặc dù cơ chế này là giả thuyết, nó nhấn mạnh rằng mối quan hệ bình thường giữa phức hợp troponintropomyosin và actin bị thay đổi bởi các ion canxi, sinh ra một điều kiện mới dẫn đến sự co bóp.

Sự tương tác của sợi Actin “hoạt hóa” và các cầu nối chéo Myosin - Lý thuyết “đi bộ dọc” của sự co bóp

Ngay sau khi sợi actin được hoạt hóa bởi các ion canxi, đầu của các cầu nối chéo từ các sợi myosin trở nên thu hút với các vị trí hoạt động của sợi actin, và điều này, theo cách nào đó, khiến sự co bóp xảy ra. Mặc dù cách thức chính xác mà sự tương tác giữa các cầu nối chéo và actin gây ra sự co bóp vẫn còn phần nào là lý thuyết, một giả thuyết mà có bằng chứng đáng kể tồn tại là lý thuyết “đi bộ dọc” (hoặc “chốt cài”) của sự co bóp.

Cơ chế “đi bộ dọc” cho sự co bóp của cơ

Hình. Cơ chế “đi bộ dọc” cho sự co bóp của cơ

Hình chứng tỏ giả thiết cơ chế đi bộ dọc với sự co bóp. Hình cho thấy đầu của hai cầu nối chéo gắn vào và tách ra khỏi các vị trí hoạt động của một sợi actin.

Khi một đầu gắn vào một vị trí hoạt động, sự liên kết này đồng thời gây ra những thay đổi sâu sắc trong năng lượng nội phân tử giữa đầu và nhánh cầu chéo của nó.

Sự điều chỉnh mới của năng lượng làm cho đầu nghiêng về phía nhánh và kéo theo sợi actin cùng với nó. Sự nghiêng này của đầu được gọi là sinh công (power stroke). Ngay sau khi nghiêng, đầu sau đó tự động tách ra khỏi vị trí hoạt động. Tiếp theo, đầu trở lại hướng kéo dài của nó. Ở vị trí này, nó kết hợp với một vị trí hoạt động mới xa hơn xuống dọc theo sợi actin; đầu sau đó nghiêng một lần nữa để gây ra một sinh công mới, và sợi actin di chuyển thêm một bước. Do đó, đầu của các cầu chéo uốn cong trở lại và về phía trước và từng bước đi bộ dọc sợi actin, kéo hai đầu của hai sợi actin liên tiếp về phía trung tâm của sợi myosin.

Mỗi một của các cầu nối chéo được cho là hoạt động độc lập với tất cả các cầu nối khác, từng sự gắn và kéo trong một chu kỳ lặp đi lặp lại liên tục. Vì vậy, số cầu nối chéo tiếp xúc với sợi actin tại bất kỳ thời điểm nhất định nào càng lớn, lực của co bóp càng lớn.

ATP như nguồn năng lượng cho sự co bóp - Các sự kiện hóa học trong chuyển động của các đầu Myosin

Khi một cơ co, làm việc được thực hiện và năng lượng là cần thiết. Một lượng lớn ATP được tách ra để tạo thành ADP trong suốt quá trình co bóp, và khối lượng công việc được thực hiện bởi cơ càng nhiều, lượng ATP được tách ra càng nhiều; hiện tượng này được gọi là hiệu ứng Fenn. Các sự kiện nối tiếp dưới đây được cho là phương pháp để mà hiệu ứng này xảy ra:

1. Trước khi sự co bóp bắt đầu, đầu của các cầu chéo gắn với ATP. ATPase hoạt động của đầu myosin ngay lập tức sẽ tách ATP nhưng để lại sản phẩm tách, ADP cộng ion phosphate, liên kết với đầu.

Trong trạng thái này, hình dáng của đầu bởi vậy mà nó mở rộng đường vuông góc về phía sợi actin nhưng vẫn chưa gắn vào actin.

2. Khi phức hợp troponin-tropomyosin liên kết với các ion canxi, các vị trí hoạt động trên sợi actin được bộc lộ và các đầu myosin sau đó liên kết với các vị trí này, như thể hiện trong hình.

3. Sự liên kết giữa đầu của các cầu nối chéo và vị trí hoạt động của sợi actin gây ra một sự thay đổi về hình dạng tại đầu, khiến đầu nghiêng về phía nhánh của cầu nối chéo và thực hiện sinh công cho sự kéo sợi actin. Năng lượng mà kích hoạt sinh công là năng lượng đã được dự trữ, giống như một lò xo “vểnh lên”, bởi sự thay đổi về hình dạng mà đã xảy ra trong đầu khi phân tử ATP được tách ra trước đó.

4. Một khi đầu của cầu nối chéo nghiêng, sự giải phóng của ADP và ion phosphate mà trước đó gắn vào đầu được cho phép. Tại vị trí của giải phóng của ADP, một phân tử mới của ATP liên kết. Liên kết này của ATP mới gây ra tách rời của đầu khỏi actin.

5. Sau khi đầu đã tách ra khỏi actin, phân tử mới của ATP được tách ra để bắt đầu cho chu kỳ tiếp theo, dẫn tới một sinh công mới. Đó là, năng lượng “vểnh lên” lần nữa để đầu trở về trạng thái vuông góc của nó, sẵn sàng để bắt đầu chu kỳ sinh công mới.

6. Khi đầu vểnh lên (với năng lượng dự trữ của nó bắt nguồn từ ATP tách ra) liên kết với một vị trí hoạt động mới trên sợi actin, nó trở nên không vểnh lên và một lần nữa thực hiện một sinh công mới.

Như vậy, quá trình được tiến hành hết lần này đến lần khác cho đến khi các sợi actin kéo màng Z gần sát với các đầu của các sợi myosin hoặc cho đến khi mức tải trên cơ trở nên quá lớn để có thêm sự kéo xảy ra.

Bài viết cùng chuyên mục

Phản xạ tủy sống gây co cứng cơ

Các xương bị gẫy gửi các xung động về cảm giác đau về tủy sống, gây ra co cơ xung quanh. Khi gây tê cục bộ hay gây tê toàn thân, kích thích đau biến mất, sự co thắt cũng biến mất.

Đám rối thần kinh cơ ruột và đám rối thần kinh dưới niêm mạc

Đám rối thần kinh cơ ruột không hoàn toàn có tác dụng kích thích vì một số neuron của nó có tác dụng ức chế; tận cùng của các sợi đó tiết ra một chất ức chế dẫn truyền, có thể là “polypeptide hoạt mạch ruột”.

Hoạt động nhào trộn của đường tiêu hóa

Hoạt động nhào trộn có đặc điểm khác nhau ở những phần khác nhau của đường tiêu hóa. Ở một số đoạn, co bóp nhu động chủ yếu gây ra nhào trộn.

Giải phẫu chức năng của khu vực liên hợp hệ viền (Limbic)

Vỏ não Limbic là một phần của một hệ thống sâu rộng hơn, hệ Limbic, bao gồm một tập hợp các cấu trúc tế trong vùng trung tâm cơ bản của não bộ. Hệ Limbic cung cấp hầu hết sự điều khiển cảm xúc để kích hoạt các khu vực khác của não.

Mắt như cái máy ảnh: cơ chế quang học của mắt

Cùng với cách mà thấu kính máy ảnh làm hội tụ hình ảnh trên tấm phim, hệ thấu kính của mắt cũng làm hội tụ ảnh trên võng mạc. Hình ảnh này sẽ bị đảo ngược và đổi bên so với vật thực.

Mức độ thiếu oxy mà một trẻ sơ sinh có thể chịu đựng được

Khi phế nang mở, hô hấp có thể bị ảnh hưởng thêm với vận động hô hấp tương đối yếu. May mắn thay, hít vào của trẻ bình thường rất giàu năng lượng; Có khả năng tạo ra áp lực âm trong khoang màng phổi lên đến 60mmHg.

Tiêu hóa Carbohydrate sau khi ăn

Có 3 nguồn carbohydrate quan trọng là sucrose, disaccharide thường được biết như là đường mía, lactose, chúng là một disaccharide được tìm thấy trong sữa; và tinh bột.

Ức chế thần kinh: thay đổi điện thế

Ngoài sự ức chế được tạo ra bởi synap ức chế ở màng tế bào thần kinh (được gọi là ức chế sau synap), có một loại ức chế thường xảy ra ở các cúc tận cùng trước synap trước khi tín hiệu thần kinh đến được các khớp thần kinh.

Vận chuyển Glucose trong cơ thể qua màng tế bào

Glucose có thể được vận chuyển từ một phía của màng tế bào sang phía bên kia, sau đó được giải phóng, glucose sẽ được vận chuyển từ nơi có nồng độ cao đến nơi có nồng độ thấp hơn là theo chiều ngược lại.

Giải phẫu và sinh lý của cơ tim

Những cơ chế đặc biệt trong tim gây ra một chuỗi liên tục duy trì co bóp tim hay được gọi là nhịp tim, truyền điện thế hoạt động khắp cơ tim để tạo ra nhịp đập của tim.

Tác dụng của cortisol lên chuyển hóa carbohydrate

Tác dụng chuyển hóa của cortisol và glucocorticoid khác được biết nhiều nhất là tác dụng kích thích tạo đường mới tại gan, mức tăng tạo đường mới dưới tác dụng của cortisol có thể tăng từ 6 đến 10 lần.

Dạng cao nguyên của điện thế hoạt động màng tế bào

Nguyên nhân của cao nguyên điện thế hoạt động màng tế bào là một sự kết hợp của nhiều yếu tố. Đầu tiên, trong cơ tim, hai loại kênh tưởng niệm đến quá trình khử cực.

Sinh lý bệnh của hormon tuyến cận giáp và vitamin D

Canxi và phosphate không được giải phóng từ xương, xương hầu như vẫn giữ nguyên chắc khỏe. Khi các tuyến cận giáp đột nhiên bị lấy mất, ngưỡng canxi trong máu giảm và nồng độ phosphate trong máu co thể tăng gấp đôi.

Sự phát triển của hệ cơ quan thai nhi

Sự phát triển các tế bào trên mỗi cơ quan thường chưa được hoàn thiện và cần 5 tháng mang thai còn lại để phát triển hoàn toàn. Ngay cả lúc sinh, những cấu trúc nhất định, đặc biệt là hệ thần kinh, thận và gan, thiếu sự phát triển hoàn toàn, như được mô tả sau.

Gen trong nhân tế bào kiểm soát tổng hợp protein

Tầm quan trọng DNA nằm trong khả năng kiểm soát sự hình thành của protein trong tế bào. Khi hai sợi của một phân tử DNA được tách ra, các bazơ purine và pyrimidine nhô ra ở mặt bên của mỗi sợi DNA.

Điều hòa tuần hoàn: vai trò hệ thống thần kinh tự chủ

Phần quan trọng nhất của hệ thần kinh tự chủ đều hòa tuần hoàn là hệ thần kinh giao cảm, hệ thần kinh phó giao cảm cũng đóng góp một phần khá quan trọng.

Khuếch tán khí qua màng hô hấp: các yếu tố ảnh hưởng

Hệ số khuếch tán khí phụ thuộc vào khả năng hòa tan của khí trong màng tế bào, và hệ số này tỷ lệ nghịch với trọng lượng phân tử. Tỷ lệ khuếch tán khí trong màng hô hấp là gần như chính xác tương tự như trong nước.

Các hormone hoạt động chủ yếu trên bộ máy gen của tế bào

Các hormone hoạt động chủ yếu trên bộ máy gen của tế bào, các hormone steroid làm tăng tổng hợp protein, các hormone tuyến giáp làm tăng quá trình phiên mã gen trong nhân tế bào.

Giai đoạn trơ sau điện thế màng hoạt động: không có thiết lập kích thích

Nồng độ ion canxi dịch ngoại bào cao làm giảm tính thấm của màng các ion natri và đồng thời làm giảm tính kích thích. Do đó, các ion canxi được cho là một yếu tố “ổn định”.

Dẫn truyền tín hiệu cường độ đau trong bó thần kinh: tổng hợp theo không gian và thời gian

Các mức khác nhau của cường độ có thể được truyền đi hoặc bằng việc sử dụng số lượng lớn hơn các sợi dẫn truyền song song hoặc bằng việc gửi đi nhiều điện thế hoạt động hơn dọc một theo sợi thần kinh.

Thể dịch điều hòa huyết áp: tầm quan trọng của muối (NaCl)

Việc kiểm soát lâu dài huyết áp động mạch được gắn bó chặt chẽ với trạng thái cân bằng thể tích dịch cơ thể, được xác định bởi sự cân bằng giữa lượng chất dịch vào và ra.

Sự đào thải các hormone khỏi hệ tuần hoàn

Có hai yếu tố có thể làm tăng hoặc giảm nồng độ của các hormone trong máu, yếu tố là mức độ bài tiết hormone vào máu và yếu tố mức độ đào thải hormone ra khỏi máu.

Phân loại cơ trơn

Cơ trơn ở mỗi cơ quan có các đặc điểm khác nhau: (1) kích thước (2) sự sắp xếp trong các bó (3) đáp ứng với các kích thích khác nhau (4) đặc điểm phân bố thần kinh (5) chức năng.

Điều hòa bài tiết insulin

Kích thích tiết insulin bởi amino acid là quan trọng bởi vì insulin lần lượt tăng cường vận chuyển amino acid tới tế bào, cũng như sự hình thành protein trong tế bào..

Block nhĩ thất không hoàn toàn: chặn đường truyền tín hiệu điện tim

Một điện tâm đồ có P-R kéo dài khoảng 0.3s thay vì bình thường khoảng 0,2s hoặc ít hơn. Do đó, block độ 1 được định nghĩa là sự chậm dẫn truyền từ nhĩ đến thất chứ không phải mất hẳn dẫn truyền.