- Trang chủ
- Sách y học
- Sinh lý y học
- Ô xy của tế bào: sự chuyển hóa và sử dụng
Ô xy của tế bào: sự chuyển hóa và sử dụng
Càng tăng nồng độ của ADP làm tăng chuyển hóa và sử dụng O2 (vì nó kết hợp với các chất dinh dưỡng tế bào khác nhau) thì càng tăng giải phóng năng lượng nhờ chuyển đổi ADP thành ATP.
Biên tập viên: Trần Tiến Phong
Đánh giá: Trần Trà My, Trần Phương Phương
Ảnh hưởng của PO2 nội bào lên tốc độ sử dụng oxy
Chỉ cần một lượng nhỏ oxy cho các phản ứng hóa học trong tế bào diễn ra bình thường. Lý do cho hiện tượng này là nhờ hệ thống các enzym hô hấp của tế bào, các enzyme này sẽ được thảo luận trong Chương 68, chúng được dùng để khi PO2 trong tế bào lớn hơn 1 mm Hg, lượng O2 sẵn có không còn là một yếu tố ức chế tốc độ của các phản ứng hóa học, thay vào đó, yếu tố ức chế chính là nồng độ adenosine diphosphate (ADP) nội bào. Hiệu ứng này được thể hiện trong HÌNH 41-11, cho thấy mối quan hệ giữa PO2 nội bào và tốc độ sử dụng O2 ở các nồng độ ADP khác nhau. Có thể thấy bất cứ khi nào PO2 nội bào trên 1 mm Hg, tốc độ sử dụng O2 không thay đổi với bất kỳ nồng độ nào của ADP nội bào. Ngược lại, khi nồng độ ADP bị thay đổi, tốc độ sử dụng O2 thay đổi tương ứng với sự thay đổi nồng độ ADP.
Khi adenosine triphos-phate (ATP) được sử dụng trong các tế bào để cung cấp năng lượng, nó được chuyển đổi thành ADP. Càng tăng nồng độ của ADP làm tăng chuyển hóa và sử dụng O2 (vì nó kết hợp với các chất dinh dưỡng tế bào khác nhau) thì càng tăng giải phóng năng lượng nhờ chuyển đổi ADP thành ATP. Trong điều kiện hoạt động bình thường, yếu tố cuối cùng ảnh hưởng đến tốc độ sử dụng O2 là tốc độ tiêu tốn năng lượng trong các tế bào, đó cũng chính là tốc độ mà ADP được tạo thành từ ATP. which ADP is formed from ATP.
Hình. Ảnh hưởng của adenosine diphosphate nội bào (ADP) và PO2 về tốc độ sử dụng oxy của các tế bào. Lưu ý rằng miễn là PO2 nội bào duy trì trên 1 mm Hg, yếu tố kiểm soát đối với tốc độ sử dụng oxy là nồng độ nội bào của ADP
Ảnh hưởng của khoảng cách khuếch tán từ mao mạch tới tế bào trong việc sử dụng oxy
Các tế bào ở mô hiếm khi có khoảng cách xa hơn 50 micromet tới một mao mạch, và bình thường O2 có thể khuyếch tán dễ dàng từ các mao mạch tới các tế bào đủ cho chuyển hóa. Tuy nhiên, thỉnh thoảng, các tế bào nằm xa các mao mạch hơn bình thường, và tỷ lệ O2 khuếch tán đến các tế bào này có thể trở nên quá thấp đến nỗi mà PO2 nội bào giảm xuống dưới mức cần thiết để duy trì sự trao đổi chất trong tế bào. Do đó, trong trạng thái này, ở những tế bào bị khuếch tán giới hạn thì mức sử dụng oxy không còn được xác định bởi số lượng của ADP nội bào nữa. Tuy nhiên, trường hợp này hầu như không bao giờ xảy ra, ngoại trừ ở các tình trạng bệnh lý.
Ảnh hưởng của lưu lượng máu lên sử dụng oxy cho chuyển hóa
Tổng lượng O2 có sẵn trong mỗi phút để sử dụng trong mô bất kỳ được xác định bởi (1) lượng O2 có thể được vận chuyển đến các mô trong mỗi 100 mililít máu và (2) tốc độ của dòng máu. Nếu tốc độ chảy của máu giảm xuống bằng không, số lượng O2 có thể sử dụng cũng giảm xuống bằng không. Như vậy, có trường hợp tốc độ máu chảy qua một mô có thể rất thấp đến nỗi mà PO2 ở mô giảm xuống dưới 1 mm Hg- mức cần thiết cho chuyển hóa của tế bào. Dưới những tình trạng này, tốc độ sử dụng O2 của mô là lưu lượng máu giới hạn. Cả tình trạng hạn chế khuếch tán và cả tình trạng hạn chế lưu lượng máu đều không thể kéo dài bởi tế bào sẽ nhận ít O2 hơn mức cần để duy trì sự sống cho tế bào.
Tuy nhiên, nếu một người hít O2 ở mức PO2 tại phế nang rất cao, lượng O2 vận chuyển trong trạng thái hoà tan có thể lớn hơn nhiều, vì vậy tình trạng O2 vượt quá mức giới hạn bình thường đôi khi xuất hiện trong các mô, và "ngộ độc O2" xảy ra sau đó.
Sự vận chuyển của O2 ở dạng hòa tan
Bình thường, PO2 động mạch là 95 mm Hg, khoảng 0,29 ml O2 được hòa tan trong 100 ml máu, và khi PO2 của máu giảm xuống 40 mm Hg – giá trị bình thường trong các mao mạch ở mô, chỉ duy trì 0,12 ml O2 hòa tan. Nói cách khác, mỗi 100 mililít máu động mạch lưu thông thường vận chuyển 0,17 ml oxy dưới dạng hoà tan vào mô. Con số này được so sánh với gần 5 ml O2 được vận chuyển bằng các hemoglobin trong hồng cầu. Vì vậy, lượng O2 được vận chuyển đến các mô trong trạng thái hoà tan thường ít, chỉ khoảng 3 % tổng số dạng vận chuyển, trong khi 97% vận chuyển bởi các hemoglobin.
Trong khi lao động nặng, hemoglobin giải phóng O2 đến các mô tăng gấp ba lần, lượng O2 tương ứng vận chuyển trong trạng thái hoà tan giảm xuống ít nhất 1,5 %.
Tình trạng này thường dẫn đến rối loạn ý thức và thậm chí là tử vong, điều này sẽ được thảo luận trong Chương 45 liên quan với việc thở không khí có phân áp oxy cao ở một số thợ lặn dưới biển sâu.
Carbon Monoxide thế chỗ oxy gắn vào Hemoglobin
Carbon monoxide (CO) kết hợp với hemoglobin tại cùng một vị trí trên phân tử hemoglobin giống như O2; do đó nó có thể thay thế O2 để gắn với hemoglobin, qua đó làm giảm khả năng vận chuyển O2 của máu. Hơn nữa, nó liên kết chặt hơn O2 khoảng 250 lần, điều này được chứng minh bởi đồ thị phân ly COhemoglobin trong HÌNH 41-12. Đồ thị này là gần như giống hệt với đồ thị phân ly Oxy-hemoglobin, ngoại trừ phân áp CO, hiển thị trên trục hoành, chỉ bằng 1/250 của phân áp oxy ở đồ thị phân ly oxy-hemoglobin ở HÌNH 41-8. Do đó, với phân áp của CO chỉ 0,4 mm Hg trong các phế nang- 1/250 phân áp O2 bình thường ở phế nang (100 mmHg PO2) đã cho phép CO cạnh tranh bình đẳng với O2 trong việc gắn với hemoglobin và dẫn đến một nửa hemoglobin trong máu bị gắn với CO thay vì phải gắn với O2. Do đó, một phân áp CO chỉ 0,6 mm Hg (nồng độ thể tích ít hơn một phần nghìn trong không khí) cũng có thể gây chết người.
Mặc dù thể tích O2 trong máu sẽ giảm đáng kể khi ngộ độc CO, PO2 của máu có thể vẫn bình thường. Tình trạng này làm cho việc ngộ độc CO đặc biệt nguy hiểm vì máu có màu đỏ tươi và không có dấu hiệu rõ ràng của thiếu oxy máu, chẳng hạn như là xanh các ngón tay hoặc môi (chứng xanh tím). Ngoài ra, PO2 không giảm, và các cơ chế feedback thông thường nhằm kích thích tăng tần số hô hấp để đáp ứng với sự thiếu O2 (thường là phản ánh bởi PO2 thấp) không xảy ra. Vì não là một trong những cơ quan đầu tiên bị ảnh hưởngbởi tình trạng thiếu oxy, người bệnh có thể trở nên mất phương hướng và bất tỉnh trước khi nhận ra được sự nguy hiểm.
Một bệnh nhân bị ngộ độc CO nặng có thể được điều trị bằng cách dùng O2 nguyên chất vì phân áp O2 cao ở phế nang có thể thay thế nhanh chóng nhờ sự kết hợp của nó với hemoglobin. Cũng có thể có ích khi cho bệnh nhân khi cho ngửi CO2 5% vì kích thích mạnh mẽ trung tâm hô hấp, làm tăng thông khí ở phổi và dẫn tới làm giảm CO ở phế nang. Với O2 cao áp và liệu pháp CO2, CO có thể được gỡ bỏ khỏi máu nhanh hơn 10 lần so với khi không điều trị.
Hình. Đường cong phân ly carbon monoxide-hemoglobin. Lưu ý áp suất carbon monoxide cực thấp tại đó carbon monoxide kết hợp với hemoglobin.
Bài viết cùng chuyên mục
Một số yếu tố yếu tố ảnh hưởng tới hô hấp
Trong môt thời gian ngắn, hô hấp có thể được điều khiển một cách tự động làm tăng hoặc giảm thông khí do rối loạn nghiêm trọng về PCO2, pH, và PO2 có thể xảy ra trong máu.
Nguyên nhân tử vong sau khi tắc mạch vành cấp tính
Khi tim trở nên không có khả năng tạo đủ lực để bơm đủ máu ra nhánh động mạch, suy tim và các mô ngoại vi hoại tử xảy ra sau đó như là kết quả của thiếu máu ngoại vi.
Giải phẫu sinh lý sợi cơ vân
Trong hầu hết các cơ vân, mỗi sợi kéo dài trên toàn bộ chiều dài của cơ. Ngoại trừ cho khoảng 2% của sợi, mỗi sợi thường được phân bố bởi chỉ một tận cùng thần kinh, nằm gần giữa của sợi.
Trao đổi chất qua thành mạch máu: cân bằng starling
Lượng dịch lọc ra bên ngoài từ các đầu mao động mạch của mao mạch gần bằng lượng dịch lọc trở lại lưu thông bằng cách hấp thu. Chênh lệch một lượng dịch rất nhỏ đó về tim bằng con đường bạch huyết.
Sinh lý nội tiết tuyến thượng thận
Tuyến thượng thận gồm hai tuyến nhỏ úp trên hai thận, mỗi tuyến nặng khoảng 4g. Tuyến thượng thận gồm 2 phần riêng biệt : phần vỏ (80%) và phần tuỷ (20%). Chức năng tuỷ thượng thận, liên quan đến hoạt động hệ giao cảm.
Sự phát triển của buồng trứng
Khi buồng trứng phóng noãn (rụng trứng) và nếu sau đó trứng được thụ tinh, bước phân bào cuối cùng sẽ xảy ra. Một nửa số các nhiễm sắc thể chị em vẫn ở lại trong trứng thụ tinh và nửa còn lại được chuyển vào thể cực thứ hai, sau đó tiêu biến.
Kích thích và dẫn truyền xung động của tim
Nút xoang (còn gọi là nhĩ xoang hay nút SA) phát nhịp trong hệ thống tạo xung nhịp bình thường, theo đường dẫn xung từ nút xoang tới nút nhĩ thất (AV).
Chức năng gan của trẻ sơ sinh
Bởi vì gan của trẻ sơ sinh thiếu hình thành các protein huyết tương, nồng độ protein huyết tương giảm trong những tuần đầu ít hơn trẻ lớn. Thỉnh thoảng nồng độ protein máu giảm đến mức thấp gây phù.
Các yếu tố gây ra điện thế hoạt động
Sự khởi đầu của điện thế hoạt động cũng làm cho cổng điện thế của kênh kali mở chậm hơn một phần nhỏ của một phần nghìn giây sau khi các kênh natri mở.
Tính nhịp điệu của mô dễ bị kích thích phóng điện lặp lại
Các dòng chảy của các ion kali tăng lên mang số lượng lớn của các điện tích dương ra bên ngoài của màng tế bào, để lại một lượng đáng kể ion âm hơn trong tế bào xơ hơn trường hợp khác.
Dịch vào ra của cơ thể: cân bằng trong trạng thái ổn định
Dịch trong cơ thể rất hằng định, bởi vì nó liên tục được trao đổi với môi trường bên ngoài cũng như với các bộ phận khác trong cơ thể.
Kích thích riêng và đồng loạt bởi hệ giao cảm và phó giao cảm
Trong một số trường hợp, hầu hết toàn bộ các phần của hệ thần kinh giao cảm phát xung đồng thời như một đơn vị thống nhất, hiện tượng này được gọi là sự phát xung đồng loạt.
Sự hình thành thủy dịch từ thể mi của mắt
Thủy dịch luôn được tiết ra và tái hấp thu. Sự cân bằng giữa sự tiết ra và sự hấp thu quyết định thể tích của thủy dịch và áp suất nội nhãn cầu.
Sinh lý bệnh của hormon tuyến cận giáp và vitamin D
Canxi và phosphate không được giải phóng từ xương, xương hầu như vẫn giữ nguyên chắc khỏe. Khi các tuyến cận giáp đột nhiên bị lấy mất, ngưỡng canxi trong máu giảm và nồng độ phosphate trong máu co thể tăng gấp đôi.
Cơ chế chung của sự co cơ
Acetylcholine hoạt động trên một khu vực cục bộ của màng sợi cơ để mở các kênh cation có “cổng acetylcholine” thông qua các phân tử protein lơ lửng trong màng.
Các chức năng sinh lý của gan
Gan tổng hợp acid béo từ glucid, protid và từ các sản phẩm thoái hóa của lipid, acid béo được chuyển hóa theo chu trình.
Vai trò của insulin trong chuyển đổi carbohydrate và chuyển hóa lipid
Khi nồng độ glucose máu cao, insulin được kích thích bài tiết và carbohydrate được sử dụng thay thế chất béo. Glucose dư thừa trong máu được dự trữ dưới dạng glycogen và chất béo ở gan, glycogen ở cơ.
Sóng vận mạch huyết áp: dao động của hệ thống điều chỉnh phản xạ huyết áp
Khoảng thời gian cho mỗi chu kỳ là 26 giây đối với chó đã gây mê, 7-10 giây ở người không gây mê. Sóng này được gọi là sóng vận mạch hay sóng Mayer.
Sinh lý điều hòa lưu lượng máu não
Lưu lượng máu não của một người trưởng thành trung bình là 50 đến 65 ml/100 gam nhu mô não mỗi phút. Với toàn bộ não là từ 750 đến 900 ml/ phút. Theo đó, não bộ chỉ chiếm 2% trọng lượng cơ thể nhưng nhận 15% cung lượng tim lúc nghỉ.
Điều hòa glucose máu
Khi lượng đường trong máu tăng lên đến một nồng độ cao sau bữa ăn và insulin tiết ra cũng tăng lên, hai phần ba lượng đường hấp thu từ ruột là gần như ngay lập tức được lưu trữ dưới dạng glycogen trong gan.
Tế bào: đơn vị cấu trúc và chức năng của cơ thể
Tế bào chỉ có thể sống, phát triển và thực hiện các chức năng của nó trong môi trường tập trung của oxygen, glucose, các ion, amino acid, chất béo và các chất cần thiết khác trong một môi trường.
Chức năng thính giác của vỏ não: cơ chế thính giác trung ương
Mỗi neuron riêng lẻ trong vỏ não thính giác đáp ứng hẹp hơn nhiều so với neuron trong ốc tai và nhân chuyển tiếp ở thân não. Màng nền gần nền ốc tai được kích thích bởi mọi tần số âm thanh, và trong nhân ốc tai dải âm thanh giống vậy được tìm thấy.
Giải phóng năng lượng cho cơ thể từ thực phẩm và năng lượng tự do
Năng lượng đòi hỏi cho hoạt động của cơ, sự bài tiết của các tuyến, duy trì điện thế màng ở sợi thần kinh và sợi cơ, sự tổng hợp vật chất trong tế bào, hấp thu thức ăn từ ống tiêu hóa và rất nhiều chức năng khác.
Vai trò của CO2 và Ion H+ điều hòa hô hấp: điều hòa hóa học trung tâm hô hấp
Nồng độ CO2 hay ion H+ quá cao trong máu tác động trực tiếp vào trung tâm hô hấp, làm tăng đáng kể lực mạnh của các tín hiệu vận động hít vào và thở ra tới các cơ hô hấp.
Điều khiển bài tiết hormone qua cơ chế feedback
Mặc dù nồng độ các hormone trong huyết tương luôn dao động theo từng mức độ kích thích khác nhau trong ngày, nhưng sự xuất hiện của tất cả hormone phải được kiểm soát chặt chẽ.