- Trang chủ
- Sách y học
- Sinh lý y học
- Kênh cổng điện thế natri và kali
Kênh cổng điện thế natri và kali
Khi các kênh kali mở, chúng vẫn mở cho toàn bộ thời gian điện thế màng hoạt động và không đóng lại cho đến khi điện thế màng được giảm trở lại một giá trị âm.
Biên tập viên: Trần Tiến Phong
Đánh giá: Trần Trà My, Trần Phương Phương
Yếu tố cần thiết gây nên quá trình khử cực và tái cực của màng tế bào thần kinh trong suốt quá trình điện thế hoạt động là kênh có cánh cổng điện thế natri- đóng vai trò quan trọng trong việc tăng nhanh chóng hoạt đông tái cực của màng tế bào. 2 kênh có cánh cổng điện thế này được thêm vào cùng với bơm Na+-K+ và kênh rò rỉ kali.
Hoạt hóa và khử hoạt kênh có cánh cổng điện thế natri
Phần trên của hình chỉ ra kênh có cánh cổng điện thế natri ở 3 giai đoạn riêng biệt. Kênh này có 2 cổng: một ở bên ngoài được gọi là cổng hoạt hóa và một cổng ở bên trong gọi là cổng bất hoạt.
Phía trên trái của hình vẽ thể hiện giai đoạn hai cổng này khi màng đang nghỉ, khi điện thế màng là -90mV. Ở giai đoạn này cổng hoạt hóa bị đóng lại, ngăn cản bất kì dòng natri nào vào bên trong sợi thần kinh qua kênh natri.

Hình. Đặc điểm của các kênh điện thế natri (trên cùng) và kali (dưới cùng), cho thấy sự kích hoạt và bất hoạt liên tiếp của các kênh natri và chậm kích hoạt các kênh kali khi điện thế màng thay đổi từ giá trị âm bình thường sang giá trị dương.
Hoạt hóa kênh natri
Khi điện thế màng trở nên ít âm hơn trong giai đoạn nghỉ, tăng dần từ -90mV về phía 0, khi lên tới trị số khoảng -70 đến -50mV thì điện thế đó tạo một sự biến đổi đột ngột hình dáng cổng hoạt hóa, cánh cổng này chuyển sang vị trí mở cửa, ion natri ùa qua kênh vào trong tế bào vì tính thấm của natri với màng tăng lên gấp 500-5000 lần.
Khử hoạt kênh natri
Phần trên hình chỉ ra giai đoạn 3 của kênh natri. Sự tăng điện thế làm mở cổng hoạt hóa thì đồng thời cũng làm đóng cổng khử hoạt.
Cổng khử hoạt được đóng trong vòng vài phần vạn giây sau khi cổng hoạt hóa được mở. Có điều là mở cổng hoạt hóa thì nhanh trong khi đóng cổng khử hoạt thì từ từ. Vì vậy sau khi kênh natri được mở và duy trì trong vài phần vạn giây, cổng khử hoạt đóng lại và ion natri không thể tràn vào bên trong màng tế bào. Ở điểm này, điện thế màng bắt đầu trở lại trạng thái lúc nghỉ. Đây gọi là quá trình tái cực.
Một đặc điểm đáng chú ý của quá trình hoạt động khử hoạt kênh natri là cổng khử hoạt không mở trở lại cho tới khi điện thế màng đã quay trỏ về hoặc gần tới mức điện thế nghỉ ban đầu. Do đó không thể có kênh natri mở trở lại mà không có sự tái cực của các sợi thần kinh.

Hình. Phương pháp kẹp điện thế trên máy để nghiên cứu dòng ion qua các kênh cụ thể.
Kênh cổng điện thế kali và sự hoạt hóa nó
Phần dưới hình chỉ ra kênh có cánh cổng điện thế kali trong 2 giai đoạn: trong lúc nghỉ ( trái) và hướng về kết thúc điện thế hoạt động( phải). Trong suốt giai đoạn nghỉ, cổng kênh kali bị đóng, ion kali bị ngăn chặn đi qua kênh này ra bên ngoài,khi điện thế màng tăng dần từ -90mV về phía 0, khi lên tới trị số khoảng -70 đến -50mV thì điện thế đo tạo một sự biến đổi đột ngột hình dáng cổng hoạt hóa, cánh cổng này chuyển sang vị trí mở cửa,cho phép ion kali ùa qua kênh ra ngoài tế bào. Tuy nhiên có một chút chậm trễ trong việc mở kênh kali, hầu như chúng chỉ mở khi kênh natri bắt đầu đóng lại do sự khử hoạt hóa. Vì vậy việc giảm lượng natri vào trong tế bào cùng với tốc độ của quá trình tái cực dẫn đến việc thiết lập lại điện thế màng trong thời gian vài phần vạn giây.
Phương pháp” kẹp điện thế’ nghiên cứu ảnh hưởng của điện áp lên việc mở và đóng cánh cổng điện thế. Với các nghiên cứu ban đầu đã dẫn đến sự hiểu biết về các kênh natri và kali,các nhà khoa học Hodgkin và Huxley đã được nhận giải Nobel. Bản chất của những nghiên cứu này được trình bày trong hình.
Hình cho thấy các phương pháp kẹp điện áp, đó là dùng để đo dòng chảy của các ion thông qua các kênh khác nhau. Trong việc sử dụng thiết bị này, hai điện cực được đưa vào các sợi thần kinh.
Một trong những điện cực được sử dụng để đo điện thế màng, và cực còn lại được sử dụng để đo các dòng điện vào hoặc ra khỏi các sợi thần kinh. Thiết bị này được sử dụng theo cách sau: Các nhà khoa học quyết định mà điện áp để thiết lập bên trong các sợi thần kinh. Sau đó, phần điện tử của thiết bị được điều chỉnh để có điện áp mong muốn, tự động tiêm điện tích dương hay âm thông qua các điện cực hiện ở bất cứ tỷ lệ nào cần thiết để giữ điện áp đo bằng điện cực điện áp ở mức độ thiết lập bởi nhà điều hành. Khi điện thế màng được tăng đột ngột tăng bởi kẹp điện thế này từ -90 mV đến số không, các cánh cổng điện thế natri và kali mở và các ion natri và kali bắt đầu đổ qua các kênh.

Hình. Những thay đổi điển hình về độ dẫn của các kênh ion natri và kali khi điện thế màng đột ngột tăng từ giá trị nghỉ bình thường −90 millivol lên giá trị dương +10 millivol trong 2 mili giây. Hình này cho thấy các kênh natri mở (kích hoạt) và sau đó đóng (không hoạt động) trước khi kết thúc 2 mili giây, trong khi các kênh kali chỉ mở (kích hoạt) và tốc độ mở chậm hơn nhiều so với các kênh natri.
Để cân bằng với ảnh hưởng của các dòng ion mong muốn thiết lập điện thế nội bào, dòng điện được tiêm tự động thông qua các điện cực của kẹp điện thế để duy trì điện áp nội bào ổn định cần thiết ở mức không.
Để đạt được mức này, lượng tiêm vào phải bằng nhưng chiều đối ngược với dòng chảy thông qua các kênh trên màng. Để đo dòng chảy hiện tại đang diễn ra tại mỗi thời điểm như thế nào, điện cực được nối với một nghiệm dao động ghi lại dòng chảy hiện tại, như đã chứng minh trên màn hình của nghiệm dao động trong hình. Cuối cùng, các nhà khoa học điều chỉnh nồng độ của các ion để khác hơn so với mức bình thường cả bên trong và bên ngoài các sợi thần kinh và lặp đi lặp lại nghiên cứu. Thí nghiệm này có thể được thực hiện dễ dàng khi sử dụng các sợi dây thần kinh lớn lấy từ một số vật không xương sống, đặc biệt là các sợi thần kinh mực ống khổng lồ, mà trong một số trường hợp đường kính lớn tới 1 mm. Khi natri là ion duy nhất thấm vào dung dịch bên trong và bên ngoài sợi trục mực, kẹp điện thế chỉ đo dòng chảy thông qua các kênh natri. Tương tự với kênh kali.
Một phương pháp khác để nghiên cứu các dòng ion qua một loại kênh riêng biệt là để chặn một loại kênh tại một thời điểm. Ví dụ, các kênh natri có thể bị chặn bởi một chất độc gọi là tetrodotoxin khi nó được gắn vào bên ngoài của màng tế bào, nơi là vị trí các cửa hoạt hóa natri. Ngược lại, ion tetraetylammoni chặn các kênh kali khi nó được gắn vào bên trong các sợi thần kinh.
Hình cho thấy thay đổi điển hình trong độ dẫn của cánh cổng điện thế kênh natri và kali khi thế màng đột nhiên thay đổi thông qua việc sử dụng kẹp điện thế từ -90 mV đến 10 mV và 2 mili giây sau đó, trở lại -90 mV. Lưu ý sự mở đột ngột của các kênh natri (giai đoạn kích hoạt) trong một phần nhỏ của một phần nghìn giây sau khi điện thế màng tăng lên đến giá trị dương. Tuy nhiên, trong một phần nghìn giây tiếp hoặc lâu hơn, các kênh natri tự động đóng lại (giai đoạn bất hoạt).
Lưu ý việc mở (kích hoạt) của kênh kali từ từ và đạt đến trạng thái mở đầy đủ chỉ sau khi các kênh natri đã gần như đóng hoàn toàn. Hơn nữa, một khi các kênh kali mở, chúng vẫn mở cho toàn bộ thời gian điện thế màng hoạt động và không đóng lại cho đến khi điện thế màng được giảm trở lại một giá trị âm.
Bài viết cùng chuyên mục
Trạm thần kinh: sự phân kỳ của các tín hiệu đi qua
Sự phân kỳ khuếch đại hiểu đơn giản là các tín hiệu đầu vào lan truyền đến một số lượng nơ-ron lớn hơn khi nó đi qua các cấp nơ-ron liên tiếp trong con đường của nó.
Block nút nhĩ thất: chặn đường truyền tín hiệu điện tim
Thiếu máu nút nhĩ thất hoặc bó His thường gây chậm hoặc block hẳn dẫn truyền từ nhĩ đến thất. Thiếu máu mạch vành có thể gây ra thiếu máu cho nút nhĩ thất và bó His giống với cơ chế gây thiếu máu cơ tim.
Sự hình thành thủy dịch từ thể mi của mắt
Thủy dịch luôn được tiết ra và tái hấp thu. Sự cân bằng giữa sự tiết ra và sự hấp thu quyết định thể tích của thủy dịch và áp suất nội nhãn cầu.
Hệ thống đệm hemoglobin cho PO2 ở mô
O2 có thể thay đổi đáng kể, từ 60 đến hơn 500 mm Hg, nhưng PO2 trong các mô ngoại vi không thay đổi nhiều hơn vài mmHg so với bình thường, điều này đã chứng minh rõ vai trò "đệm oxy" ở mô của hệ thống hemoglobin trong máu.
Vận chuyển lipids trong dịch cơ thể
Cholesterol và phospholipid được hấp thụ từ hệ thống ruột vào trong chylomicron. Vì thế dù chylomicron được cấu tạo chủ yếu từ triglycerides, chúng còn chứa phospholipid, cholesterol và apoprotein B.
Suy nghĩ ý thức và trí nhớ của con người
Mỗi suy nghĩ bao gồm những tín hiệu đồng thời trên nhiều vùng của vỏ não, đồi thị, hệ viền, và chất lưới của thân não. Một vài suy nghĩ cơ bản hầu như chắc chắn phụ thuộc hầu hết hoàn toàn vào trung tâm dưới vỏ.
Chức năng thần kinh: xử lý của synap và lưu trữ thông tin
Synap là điểm tiếp nối từ dây thần kinh này đến dây thần kinh khác. Tuy nhiên, điều quan trọng được nói đến ở đây là các synap này sẽ giúp cho sự lan truyền của tín hiệu thần kinh đi theo những hướng nhất định.
Vai trò và chức năng của Protein huyết tương
Proteins huyết tương là một nguồn amio acid của mô, khi các mô cạn kiệt protein, các protein huyết tương có thể hoạt động như một nguồn thay thế nhanh chóng.
Duy trì thăng bằng tĩnh: chức năng của soan nang và cầu nang
Khi cơ thể đột ngột bị đẩy mạnh ra trước - là khi cơ thể tăng tốc-đá tai, thứ có quán tính lớn hơn dịch xung quanh, đổ ra phía sau và chạm các nhung mao của tế bào có lông, và thông tin về sự mất thăng bằng được gửi về thần kinh trung ương.
Hấp thu ở đại tràng và hình thành phân
Phần lớn hấp thu ở đại tràng xuất hiện ở nửa gần đại tràng, trong khi chức năng phần sau đại tràng chủ yếu là dự trữ phân cho đến một thời điểm thích hợp để bài tiết phân và do đó còn được gọi là đại tràng dự trữ.
Hormone parathyroid (tuyến cận giáp)
Tuyến cận giáp của con người trưởng thành, chứa chủ yếu là các tế bào chính và một số lượng nhỏ đến trung bình các tế bào oxyphil, nhưng tế bào oxyphil vắng mặt ở nhiều loài động vật cũng như ở người trẻ.
Cấu trúc hóa học của triglycerid (chất béo trung tính)
Cấu trúc triglycerid gồm 3 phân tử acid béo chuỗi dài kết nối với nhau bằng một phân tử glycerol. Ba acid béo phổ biến hiện nay cấu tạo triglycerides trong cơ thể con người.
Glucagon và tác dụng lên chuyển hóa glucose
Các tác dụng ấn tượng nhất của glucagon là khả năng gây thoái hóa glycogen trong gan, do đó làm tăng nồng độ glucose máu trong vòng vài phút.
Phản xạ gấp và phản xạ rút lui khỏi vật kích thích
Các thông tin khởi phát phản xạ rút lui không được truyền trực tiếp vào neuron sừng trước tủy sống mà thay vào đó trước tiên được truyền vào các neuron liên hợp, rồi mới vào neuron vận động.
Hệ thần kinh trung ương: so sánh với máy tính
Trong các máy tính đơn giản, các tín hiệu đầu ra được điều khiển trực tiếp bởi các tín hiệu đầu vào, hoạt động theo cách tương tự như phản xạ đơn giản của tủy sống.
Sóng hô hấp trong áp suất động mạch
Tăng huyết áp trong giai đoạn sớm của thì thở ra và giảm trong phần còn lại của chu kỳ hô hấp. Khi thở sâu, huyết áp có thể tăng 20mmHg với mỗi chu kỳ hô hấp.
Mức độ thiếu oxy mà một trẻ sơ sinh có thể chịu đựng được
Khi phế nang mở, hô hấp có thể bị ảnh hưởng thêm với vận động hô hấp tương đối yếu. May mắn thay, hít vào của trẻ bình thường rất giàu năng lượng; Có khả năng tạo ra áp lực âm trong khoang màng phổi lên đến 60mmHg.
Sinh lý hồng cầu máu
Hồng cầu không có nhân cũng như các bào quan, thành phần chính của hồng cầu là hemoglobin, chiếm 34 phần trăm trọng lượng.
Synap thần kinh trung ương: Receptor kích thích hay ức chế tại màng sau synap
Thay đổi về quá trình chuyển hóa nội bào ví dụ như làm tăng số lượng thụ thể màng kích thích hoặc giảm số lượng thụ thể màng ức chế cũng có thể kích thích hoạt động của tế bào thần kinh.
Cấu trúc chức năng tế bào của Phospholipid và Cholesterol - Đặc biệt đối với màng
Phospholipids và cholesterol hình thành các yếu tố cấu trúc các tế bào là tốc độ đổi mới chậm của các chất trong hầu hết các mô ngoài mô gan được tính theo tháng hoặc theo năm.
Cơ chế bài tiết cơ bản của tế bào tuyến đường tiêu hóa
Mặc dù tất cả cơ chế bài tiết cơ bản được thực hiện bởi các tế bào tuyến đến nay vẫn chưa được biết, nhưng những bằng chứng kinh nghiệm chỉ ra những nguyên lý bài tiết trình bày bên dưới.
Sinh lý nhóm máu
Trên màng hồng cầu người, người ta đã tìm ra khoảng 30 kháng nguyên thường gặp và hàng trăm kháng nguyên hiếm gặp khác. Hầu hết những kháng nguyên là yếu, chỉ được dùng để nghiên cứu di truyền gen và quan hệ huyết thống.
Khả năng duy trì trương lực của mạch máu
Khả năng thay đổi trương lực của tĩnh mạch hệ thống thì gấp khoảng 24 lần so với động mạch tương ứng bởi vì do khả năng co giãn gấp 8 lần và thể tích gấp khoảng 3 lần.
Vận chuyển thụ động qua màng bào tương
Khuếch tán đơn giản, là hình thức khuếch tán trong đó các phân tử vật chất được vận chuyển, từ nơi nồng độ cao đến nồng độ thấp.
Lách: kho dự trữ hồng cầu
Trong mô lách, các mao mạch thì cho máu thấm qua, bao gồm các tế bào hồng cầu, máu rỉ ra từ các thành của mao mạch vào các mắt xích nằm ngang khớp nhau, tạo nên mô lách màu đỏ.
